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SHARP REACHABILITY RESULTS FOR
THE HEAT EQUATION IN ONE SPACE DIMENSION

KARIM KELLAY, THOMAS NORMAND AND MARIUS TUCSNAK

This paper gives a complete characterization of the reachable space for a system described by the
1-dimensional heat equation with L2 (with respect to time) Dirichlet boundary controls at both ends. More
precisely, we prove that this space coincides with the sum of two spaces of analytic functions (of Bergman
type). These results are then applied to give a complete description of the reachable space via inputs
which are n-times differentiable functions of time. Moreover, we establish a connection between the norm
in the obtained sum of Bergman spaces and the cost of null controllability in small time. Finally we show
that our methods yield new complex analytic results on the sums of Bergman spaces in infinite sectors.

1. Introduction

Determining the reachable space of a controlled dynamical system is a major question in control theory.
Knowledge of this set gives important information on our capability of acting on the state of a system
and for safety verifications. This fundamental question is well understood for linear finite-dimensional
systems (see Section 2 below for some background material) but much less is known for time-invariant
linear infinite-dimensional systems (namely those governed by partial differential equations). Most of the
known results in this context concern the case when the system is exactly controllable, which means, as
stated below, that the reachable state coincides with the state space of the system. When the reachable
space is a strict subspace of the state space, its description is generally far from complete. In this work
we focus on a case which might look very elementary but which encompasses a rich structure: a system
described by the heat equation in one space dimension with Dirichlet boundary control. The first results
on this problem go back to the seminal paper of [Fattorini and Russell 1971] (see also [Ervedoza and
Zuazua 2011] for first improvements by a different approach). More refined estimates have been obtained
only during the last three years, see work of Martin, Rosier and Rouchon [Martin et al. 2016], Dardé
and Ervedoza [2018] and Hartmann, Kellay and Tucsnak [Hartmann et al. 2020]. The results in the
papers quoted above reveal surprising and deep connections between controllability and reachability
theory for the heat equation and spaces of analytic or Gevrey-type functions and open the way towards
new applications, namely for the control of nonlinear parabolic equations and for time optimal control
problems (with point target) for the heat equation. The main contribution brought in by the present work
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consists in providing a complete characterization of the reachable space of the system described by the
heat equation in one space dimension with Dirichlet boundary control. Our results, presented in terms
of sums of classical Hilbert spaces of analytic functions, are sharp in the following sense: unlike the
existing results quoted above, which assert that the reachable space is sandwiched between two spaces of
analytic functions, we prove that this space coincides with the sum of two spaces of analytic functions.
This main result is further applied in obtaining a complete characterization of the space of functions
which can be reached by smooth (in a Sobolev scale) inputs and then in deriving an estimate for the cost
of null controllability in small time. Note that very recently Orsoni [2021] gave an apparently different
characterization of the reachable space for the same system. This result motivated the discussion in
Section 7 below, where we obtain new connections, which might be of independent interest, concerning
sums of possibly weighted Bergman spaces.

In the remaining part of this introduction we give an overview of the existing theory and we state the
main results which will be proved in the following sections.

We consider the system
∂w

∂t
(t, x)=

∂2w

∂x2 (t, x), t ⩾ 0, x ∈ (0, π),

w(t, 0)= u0(t), w(t, π)= uπ (t), t ∈ [0,∞),

w(0, x)= 0, x ∈ (0, π),

(1-1)

which models the heat propagation in a rod of length π , controlled by prescribing the temperature at both
ends. It is well known that for every u0, uπ ∈ L2

[0,∞) the problem (1-1) admits a unique solution w
and that the restriction of this function to (0,∞)× (0, π) is an analytic function. The input-to-state maps
(briefly, input maps) (8τ )τ⩾0 are defined by

8τ

[
u0

uπ

]
= w(τ, · ), τ ⩾ 0, u0, uπ ∈ L2

[0, τ ]. (1-2)

Determining the reachable space at instant τ of the system determined by the 1-dimensional heat equation
with boundary control consists in determining Ran8τ .1 For a long time, this question was considered
elusive, so efforts went first towards determining the largest possible subspaces of Ran8τ . As mentioned
above, the beginnings of the research in this direction go back to [Fattorini and Russell 1971], where it is
shown that Ran8τ contains the space of continuous functions which are 2π -periodic on R, which extend
holomorphically on the strip |Im z|< π

2 and with all the derivatives of even order vanishing at x = 0 and
x =π . This last condition is quite restrictive since it does not provide information on the reachability of very
smooth functions (like polynomials) which are not vanishing at x = 0 and x = π . This lack of information
has been partially filled in by [Schmidt 1986], where it was proved that particular types of smooth
functions (in particular polynomials) are in the reachable space, independently of their boundary values.

1An alternative concept of reachable space which might seem natural involves, for every w0 ∈ W−1,2(0, π), the operator
Rτ

(
w0;

[ u0
uπ

])
= w̃(τ, · ), where w̃ satisfies the first two equations in (1-1) with the initial condition w̃(0, · ) = w0. However,

as explained in Remark 3.8 below, in the case of the system described by first two equations in (1-1), for every τ > 0 we have
Ran Rτ = Ran8τ
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Interest in this fascinating question was revealed by the recent work [Martin et al. 2016]. To give a
precise statement of the main recent contributions to this problem we need some notation which will be
used in the remaining part of this work.

Given an open set � containing (0, π), we denote by Hol(�) the space of continuous functions
on (0, π) admitting a holomorphic extension to �. Moreover we identify these functions with their
holomorphic extensions to �. The article [Martin et al. 2016] is, to our knowledge, the first work proving
that Ran8τ can be sandwiched between two spaces of analytic functions. More precisely, the main result
in [Martin et al. 2016] asserts that

Hol(D̃)⊂ Ran8τ ⊂ Hol(D),

where D̃ in the disk centered in π
2 and of diameter πe(2e)−1

and

D = {s = x + iy ∈ C | |y|< x and |y|< π − x}. (1-3)

This result was further improved in [Dardé and Ervedoza 2018], where it was shown that for every ε > 0
we have

Hol(Dε)⊂ Ran8τ ⊂ Hol(D),

where Dε is the set of those s ∈ C such that dist(s, D) < ε. A significant advancement towards a
characterization, in terms of Banach spaces of analytic functions, of Ran8τ was obtained in [Hartmann
et al. 2020]. In this work it was proved that

E2(D)⊂ Ran8τ ⊂ A2(D), (1-4)

where E2(D) and A2(D) are the Hardy–Smirnov and Bergman spaces on D, respectively. For the reader’s
convenience we give simplified definitions of these spaces, which are

E2(D)=

{
f ∈ Hol(D)∩ L2(∂D)

∣∣∣ ∫
∂D

f (ζ )ζ n dz = 0 for all n ⩾ 1
}
, (1-5)

A2(D)= Hol(D)∩ L2(D). (1-6)

When these spaces are endowed, respectively, with norms

∥ f ∥
2
E2(D) =

∫
∂D

| f (ζ )|2 |dζ |,

∥ f ∥
2
A2(D) =

∫
D

| f (x + iy)|2 dx dy,

they become Hilbert spaces. The main new result in this paper is a complete characterization of Ran8τ in
terms of the sum of two weighted Bergman spaces. A surprising consequence of this result is that although
each one of these spaces depends on a parameter δ > 0, their sum is independent of this parameter (first
for δ small enough and then for all δ > 0, see Theorem 1.1 and Proposition 1.2 below). To state this result
we introduce the sets

1=
{
s ∈ C | −

π
4 < arg s < π

4

}
, 1̃= π −1, (1-7)
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the weight functions

ω0,δ(s)=
eRe(s2)/(2δ)

δ
, δ > 0, s ∈1, (1-8)

ωπ,δ(s̃)=
eRe[(π−s̃)2]/(2δ)

δ
, δ > 0, s̃ ∈ 1̃, (1-9)

and the weighted Bergman spaces A2(1,ω0,δ) and A2(1̃, ωπ,δ):

A2(1,ω0,δ)=

{
f ∈ Hol(1)

∣∣∣ ∫
1

| f (x + iy)|2 ω0,δ(x + iy) dx dy <∞

}
,

A2(1̃, ωπ,δ)=

{
f ∈ Hol(1̃)

∣∣∣ ∫
1̃

| f (x + iy)|2 ωπ,δ(x + iy) dx dy <∞

}
.

When endowed with the norms

∥ f ∥
2
A2(1,ω0,δ)

=

∫
1

| f (x + iy)|2 ω0,δ(x + iy) dx dy, f ∈ A2(1,ω0,δ),

∥ f̃ ∥
2
A2(1̃,ωπ,δ)

=

∫
1̃

| f̃ (x + iy)|2 ωπ,δ(x + iy) dx dy, f̃ ∈ A2(1̃, ωπ,δ),

A2(1,ω0,δ) and A2(1̃, ωπ,δ) become Hilbert spaces. An important role in the remaining part of this
work will be played by the sum of the two spaces above, i.e., the space Xδ defined for every δ > 0 by

Xδ =
{
ψ ∈ C(0, π)

| there exist ϕ0 ∈ A2(1,ω0,δ) and ϕπ ∈ A2(1̃, ωπ,δ) such that ψ = ϕ0+ϕπ on (0, π)
}
, (1-10)

which is endowed with the norm

∥ϕ∥δ = inf{∥ϕ0∥A2(1,ω0,δ)+∥ϕπ∥A2(1̃,ωπ,δ)
|ϕ0+ϕπ =ϕ, ϕ0 ∈ A2(1,ω0,δ), ϕπ ∈ A2(1̃, ωπ,δ)}. (1-11)

Theorem 1.1. For every τ > 0 we have

8τ ∈ L(L2([0, τ ]; C2); Xτ ). (1-12)

Moreover, there exists δ∗ > 0 such that for every τ > 0 and every δ ∈ (0, δ∗) we have

Ran8τ = Xδ, τ > 0. (1-13)

According to a general property of control linear time-invariant systems which are null controllable in
any time (see Proposition 3.4 below), it is known that Ran8τ is independent of τ > 0. This fact is one of
the ingredients of the proof of Theorem 1.1, as shown in Section 4. The fact that the sum of the Bergman
spaces in the right-hand side of (1-10) is independent of δ ∈ (0, δ∗) seems to be a new result, which is
strengthened by the following proposition, which will be proved in Section 7.

Proposition 1.2. For each δ > 0 let Xδ be the space defined in (1-10). Then

X t = Xτ , t, τ > 0.
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Putting together Theorem 1.1 and Proposition 1.2 we obtain:

Corollary 1.3. With the notation in Theorem 1.1 we have

Ran8τ = Xδ, τ, δ > 0. (1-14)

The remaining part of this work is organized as follows. In Section 2, in order to introduce the
appropriate vocabulary, we state some necessary concepts from linear finite-dimensional systems theory.
Section 3 is devoted to some background on infinite-dimensional well-posed linear systems, with emphasis
on the concept of reachable space and on its general properties. Moreover, we end this section by showing
that the system determined by the boundary-controlled heat equation fits the introduced abstract framework
and we describe the corresponding output maps. Section 4 is devoted to the proof of the main result,
which gives a complete characterization of the reachable space. In Section 5 this result is applied
to give a complete characterization of the reachable space obtained via controls which are n times
differentiable and with derivatives up to order n − 1 vanishing at the initial time. Section 6 provides
a link, is of possible interest for improving the existing estimates on the control cost in small time,
between the natural norm on the reachable space and the above-mentioned control cost. Finally, in
Section 7 we discuss the implications of our results on sums of Bergman spaces on infinite sectors
and we obtain a new proof of a different characterization of the reachable space, recently obtained in
[Orsoni 2021].

Notation. Throughout this paper, N, Z stand for the sets of natural numbers (starting with 1) and integer
numbers, respectively. We set Z+ = {0, 1, 2, . . . }.

2. Some background on finite-dimensional linear time-invariant systems

In this section, in order to introduce several concepts and operators in a simple motivating case, we briefly
give some well-known facts for linear time-invariant systems (LTIs) in the finite-dimensional case. For
more details we refer to good introductory chapters on this classical subject, such as those of D’Azzo and
Houpis [1975], Friedland [1986], Ionescu, Oară and Weiss [Ionescu et al. 1999], Kwakernaak and Sivan
[1972], Maciejowski [1989], Rugh [1993] and Wonham [1974].

Let U (the input space) and X (the state space) be finite-dimensional inner product spaces, with
dim X = n. A finite-dimensional linear time-invariant control system with input space U and state space
X is traditionally described by the equations

ż(t)= Az(t)+ Bu(t), t ⩾ 0. (2-1)

In the above equations u ∈ L2([0,∞); U ) is the input function and z ∈ C([0,∞); X) is the state trajectory,
whereas A, B are linear operators such that A : X → X , and B : U → X . By the variation of constants
formula (sometimes called Duhamel’s formula) equation (2-1) yields

z(t)= et Az(0)+
∫ t

0
e(t−σ)A Bu(σ ) dσ, t ⩾ 0. (2-2)
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In the above formula we can notice the appearance of two families of operators T = (Tt)t⩾0 (the
C0 semigroup on X generated by A) and 8= (8t)t⩾0 (the input to state maps) defined by

Ttϕ = et Aϕ, t ⩾ 0, ϕ ∈ X, (2-3)

8t u =

∫ t

0
e(t−σ)A Bu(σ ) dσ, t ⩾ 0, u ∈ L2([0,∞); U ). (2-4)

The two operator families above have important properties (which will be used below to define general
well-posed control systems). More precisely:

• T = (Tt)t⩾0 is a C0 semigroup of operators (briefly an operator semigroup) on X , which means that
Tt ∈ L(X) for every t ⩾ 0 and

T0ϕ = ϕ, ϕ ∈ X, (2-5)

Tt+τ = Tt Tτ , t, τ ⩾ 0, (2-6)

lim
t→0+

Ttϕ = ϕ, ϕ ∈ X. (2-7)

• For every t ⩾ 0 we have 8t ∈ L(L2([0,∞); U ), X) and

8τ+t(u ♢
τ
v)= Tt8τu +8tv, t, τ ⩾ 0, (2-8)

where the τ -concatenation of two signals u and v, denoted by u ♢
τ
v, is the function

u ♢
τ
v =

{
u(t) for t ∈ [0, τ ),
v(t − τ) for t ⩾ τ.

(2-9)

Let us also note that, with the above notation, formula (2-2) can be rewritten

z(t)= Tt z(0)+8t u, t ⩾ 0. (2-10)

Definition 2.1. Given a finite-dimensional LTI control system described by (2-1) and τ > 0, the reachable
space of this system at time τ > 0 is the range Ran8τ of the operator 8τ defined in (2-4). The system is
said to be controllable in time τ if Ran8τ = X .

The result below shows that, within the very simple framework considered in this section, the reachable
space and the controllability property do not depend on the time τ > 0. More precisely, the following
result, known as the Kalman rank condition for controllability holds:

Theorem 2.2. We have, for every τ > 0,

Ran8τ = Ran
[
B AB A2 B · · · An−1 B

]
. (2-11)

Moreover, the pair (A, B) is controllable if and only if

rank
[
B AB A2 B · · · An−1 B

]
= n. (2-12)

For exactly controllable systems there exist controls steering the state trajectory z of (2-1) from any
initial state z0 to any final state z1. Among these controls there is one of “minimal energy”. To state these
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facts in a precise manner we need the concept of the controllability Gramian Rτ of the pair (A, B), which
is defined by

Rτ =8τ8
∗

τ , τ ⩾ 0.

It is easily checked that Rτ ∈ L(X) can alternatively be written as

Rτ =

∫ τ

0
et A B B∗et A∗

dt,

and that (A, B) is controllable if and only if Rτ is a positive operator. Moreover, we have:

Proposition 2.3. Suppose that (A, B) is controllable and let z0, z1 ∈ X , τ > 0. If

u =8∗

τ R−1
τ (z1 − Tτ z0), (2-13)

then the corresponding state trajectory z of (2-1) satisfies z(0) = z0 and z(τ ) = z1. Moreover, among
all the inputs v ∈ L2([0, τ ]; U ) for which z(0)= z0 and z(τ )= z1, u is the unique one that has minimal
L2([0, τ ]; U ) norm.

Remark 2.4. From (2-11) it follows that Ran8τ contains Ran B and it is invariant under A, and thus
under Tt for every t ⩾ 0. Denoting by Ã and T̃ the restrictions of A and of T to Ran8τ , the above facts
imply that the input maps of ( Ã, B) coincide with those of (A, B). We thus have that (8, T̃) (alternatively
described by ( Ã, B)) is an exactly controllable LTI system with state space Ran8τ and input space U.

Remark 2.5. Noting that, given τ >0, the space L∞([0, τ ]; U ) can be seen as a subspace of L2([0,∞); U )
and having in mind that controls which can be effectively applied are generally bounded functions in
time, a natural question is the characterization of the set Ran8∞

τ , where 8∞
τ is the restriction of 8τ to

L∞([0, τ ]; U ). It turns out that, in the simple case considered in this section, Ran8∞
τ coincides with

Ran8τ . Indeed, let η ∈ Ran8τ . As seen in Remark 2.4, the system (8, T̃) is exactly controllable. Thus,
the minimal L2([0, τ ]; U ) control ũ steering its state trajectory from 0 at t = 0 to η at t = τ is given,
according to Proposition 2.3, by

ũ =8∗

τ R̃−1
τ η,

where R̃τ is the controllability Gramian in time τ of the system ( Ã, B). The control ũ above clearly steers
the state trajectory of the original system (A, B) from the null state at t = 0 to the state η at t = τ and ũ
obviously extends to an analytic function from C to U. We have thus shown the stronger property that
Ran8τ coincides with the range of the restriction of 8τ to signals which can be extended to analytic
functions from C to U.

3. Reachable space for well-posed linear control systems

We begin this section by stating some basic definitions and properties (mostly without proofs but with
appropriate references) of well-posed linear control time-invariant systems, with emphasis on the concept
of reachability and on properties of the reachable space. These systems provide a framework to generalize
some of the concepts in classical linear control theory to infinite-dimensional systems. In particular,
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all finite-dimensional control LTI systems are well-posed in the sense of the definition below, which is
general enough to include some basic examples of systems governed by partial differential equations (such
as the heat, Schrödinger and wave equations) with boundary control. We generally do not give proofs and
we refer to [Weiss 1989] (where these systems have been introduced under the name of abstract control
systems) and [Tucsnak and Weiss 2009, Chapters 2,3,4; 2014] for more information, including detailed
proofs. In the last part of this section we also provide proofs for two results which are quite simple but
which play an important role in this paper.

Let U (the input space) and X (the state space) be Hilbert spaces (possibly infinite-dimensional). From
a system-theoretic viewpoint the simplest way to define a linear well-posed time-invariant system in a
possibly infinite-dimensional setting is to introduce families of operators, inspired by those in (2-3), (2-4)
and sharing some of their properties.

Definition 3.1. Let U and Y be Hilbert spaces. A well-posed linear control system is a couple (T,8) of
families of operators such that

(1) T = (Tt)t⩾0 is an operator semigroup on X , i.e., it satisfies conditions (2-5)-(2-7);

(2) 8= (8t)t⩾0 is a family of bounded linear operators from L2([0,∞); U ) to X such that (2-8) holds
for every u, v ∈ L2([0,∞); U ) and all τ, t ⩾ 0.

It follows from the above definition that 8 is causal, i.e., the state does not depend on the future
input: 8τ5τ =8τ for all τ ⩾ 0, where 5τ stands for the orthogonal projection from L2([0,∞); U ) onto
L2

[0, τ ); U ). Moreover, it can be shown that the above properties imply that the map

(t, u) 7→8t u

is continuous from [0,∞)× L2([0,∞); U ) to X .
From a PDEs viewpoint, the above definition is, in general, not easy to use. In most of the cases

encountered in applications, an infinite-dimensional system is described by evolution partial differential
equations with appropriate boundary conditions (some of them being the boundary controls), and thus
by partial differential and trace operators. To describe such a system in the terms of Definition 3.1 one
needs to define a notion of solution of the considered PDE system and to prove appropriate existence and
uniqueness results for these solutions (including the “correct” choices for X and U ) and allowing one to
define the families of operators (Tt) and (8t). In general there are no explicit formulas for these families
of operators. However, as shown at the end of this section, such formulas are available for the system
described by the first two equations in (1-1), so this viewpoint is quite convenient in our case.

As in the finite-dimensional case, the reachable space of a well-posed control system at time τ > 0
is defined as Ran8τ . Unlike the finite-dimensional case, in this more general framework there is no
simple characterization of the reachable space. Moreover, this space depends in general on τ and for most
systems described by partial differential equations we have only a small amount of information on the
reachable space. Another difference with respect to the finite-dimensional case is that the range Ran8∞

τ

of the restriction of 8τ to L∞([0, τ ]; U ) is in general a strict subset of Ran8τ . We also note that, given
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τ > 0, the reachable space Ran8τ can be endowed with the norm induced from L2([0, τ ]; U ), which is

∥η∥Ran8τ = inf
u∈L2([0,τ ];U )

8τ u=ψ

∥u∥L2([0,τ ];U ), η ∈ Ran8τ . (3-1)

As mentioned in the Introduction, the concept of reachable set plays an essential role in control
theory. It appears, in particular, in the definition of the main three controllability concepts used in
infinite-dimensional system theory.

Definition 3.2. Let τ > 0 and let the pair (T,8) define a well-posed control LTI system.

• The pair (T,8) is exactly controllable in time τ if Ran8τ = X .

• (T,8) is approximately controllable in time τ if Ran8τ is dense in X .

• The pair (T,8) is null controllable in time τ if Ran8τ ⊃ Ran Tτ .

Remark 3.3. Let (T,8) be a well-posed linear LTI control system which is approximately controllable
in time τ . It is not difficult to check that for every η ∈ Ran8τ there exists a unique ψ ∈ X such that
η =8τ8

∗
τψ . Moreover, we have

∥η∥Ran8τ = ∥8∗

τψ∥L2([0,τ ];U ).

The above facts imply that Ran8τ endowed with the norm (3-1) is a Banach space. Indeed, let (ηk)k∈N ⊂

Ran8τ be a Cauchy sequence with respect to the norm (3-1). For each k ∈ N let ψk be the unique vector
in X such that ηk =8τ8

∗
τψk . Then for every k, l ∈ N we have

ηk − ηl =8τ8
∗

τ (ψk −ψl), ∥ηk − ηl∥Ran8τ = ∥8∗

τ (ψk −ψl)∥L2([0,τ ];U ).

It follows that (8∗
τψk) is a Cauchy sequence in L2([0, τ ]; U ) such that

lim
k→∞

∥8∗

τψk − v∥L2([0,τ ];U ) = 0

for some v ∈ L2([0, τ ]; U ). Setting η = 8τv we see that ∥ηk − η∥Ran8τ → 0, and thus we obtain the
desired conclusion.

We continue this section with two results on well-posed control LTI systems which are null controllable
in any time τ > 0. Although the first one is classical, see [Fattorini 1978], we give a very short proof
below, following essentially [Seidman 1979].

Proposition 3.4. Assume that the well-posed control LTI system (T,8) is null controllable in any positive
time. Then Ran8τ does not depend on τ > 0.

Proof. Let 0< τ < t . The inclusion Ran8τ ⊂ Ran8t is easy to establish. Indeed, let η ∈ Ran8τ and ũ
be a control such that 8τ ũ = η. Let u = 0 ♢

t−τ
ũ (for the notation ♢

t−τ
see (2-9)). Then, according to (2-8)

8t u =8(t−τ)+τu = Tτ8t−τ0 +8τ ũ = η,

and thus we have shown that Ran8τ ⊂ Ran8t .
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To establish the inclusion Ran8t ⊂ Ran8τ , take η ∈ Ran8t and u ∈ L2([0, τ ]; U ) such that 8t u = η.
Setting

ũ(σ )= u(σ + t − τ), σ ∈ [0, τ ],

we remark that u = u ♢
t−τ

ũ. Consequently, applying again (2-8), it follows that

η =8t u =8(t−τ)+τ (u ♢
t−τ

ũ)= Tτ8t−τu +8τ ũ.

Since the system is null controllable in any time, we have Ran8τ ⊃ Ran Tτ . This, combined with the
above formula, implies that η ∈ Ran8τ , so that indeed we have Ran8t ⊂ Ran8τ , which ends the
proof. □

Remark 3.5. If the pair (A, B) determines the well-posed control LTI system (T,8) then for every
z0 ∈ X the Cauchy problem

ż(t)= Az(t)+ Bu(t), z(0)= z0,

admits a unique solution z ∈ C([0,∞); X)) satisfying

z(τ )= Tτ z0 +8τu, τ > 0, z0 ∈ X, u ∈ L2([0,∞); U ).

Moreover, if the system is null controllable in time τ (i.e., Ran8τ ⊃ Ran Tτ ), the last formula implies
that for every z0 ∈ X the set described by z(τ ) when u takes all possible values in L2([0, τ ]; U ) coincides
with Ran8τ .

The following result in this section, although simple, does not seem to have been explicitly stated in
the literature.

Proposition 3.6. Let (T,8) be a well-posed control LTI system which is null controllable in any positive
time let τ > 0 and let g : (0, τ ] → (0,∞) be a continuous and bounded function. Define

Uτ,g =

{
u ∈ L2([0, τ ]; U )

∣∣∣ (
t 7→

u(t)
g(t)

)
∈ L2([0, τ ]; U )

}
. (3-2)

Then for every τ > 0 we have 8τ (Uτ,g)= Ran8τ .

Proof. Since the inclusion 8τ (Uτ,g)⊂ Ran8τ is obvious, we only need to check that Ran8τ ⊂8τ (Uτ,g).
To this aim we note that according to Proposition 3.4 we have Ran8τ/2 = Ran8τ ; thus for every
η ∈ Ran8τ there exists u ∈ L2([0,∞); U ) such that 8τ/2u = η. Setting ũ = 0 ♢

τ/2
u and applying (2-8) it

follows that
8τ ũ =8τ/2+τ/2(0 ♢

τ/2
u)= Tτ/28τ/20 +8τ/2u = η.

Moreover, since ũ = 0 on [0, τ/2], we have that ũ ∈ Uτ,g, so that η ∈8τ (Uτ,g), which ends the proof. □

We end this section by stating the known fact (this goes back to [Fattorini and Russell 1974]; see also
[Tucsnak and Weiss 2009, Proposition 10.7.1]) that the two first equations of (1-1) determine a well-posed
control LTI system, with appropriate choices for X and U, which is null controllable in any positive time.
Moreover, we give an expression of the input maps which has already been used in [Hartmann et al. 2020].
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Proposition 3.7. The first two equations in (1-1) determine a well-posed control LTI system with state
space X = W −1,2(0, π) and input space U = C2. Moreover the corresponding family 8 of input maps is
given by(
8τ

[
u0

uπ

])
(x)=

∫ τ

0

∂K0

∂x
(τ − σ, x)u0(σ ) dσ

+

∫ τ

0

∂Kπ

∂x
(τ − σ, x)uπ (σ ) dσ, τ > 0, u0, uπ ∈ L2

[0, τ ], x ∈ (0, π), (3-3)

where

K0(σ, x)= −

√
1
πσ

∑
m∈Z

e−(x+2mπ)2/(4σ), σ > 0, x ∈ [0, π], (3-4)

Kπ (σ, x)= Kπ (σ, π − x), σ > 0, x ∈ [0, π]. (3-5)

Finally, the considered system is null controllable in any time τ > 0.

Remark 3.8. For every w0 ∈ W −1,2(0, π) and τ > 0, let Rτ (w0; ·) be defined by

Rτ

(
w0;

[
u0

uπ

])
= w̃(τ, · ),

[
u0

uπ

]
∈ L2([0, τ ]; C2),

where w̃ satisfies the first two equations in (1-1) with the initial condition w̃(0, · ) = w0. The null
controllability of the system determined by the first two equations in (1-1) implies, according to Remark 3.5,
that for every τ > 0 and w0 ∈ W −1,2(0, π) we have Ran Rτ = Ran8τ , where 8τ is defined in (1-2).

4. Proof of Theorem 1.1

As already mentioned, the proof of Theorem 1.1 uses in an essential manner results from [Hartmann
et al. 2020]. More precisely, the main ingredient of this proof is a result which is not explicitly stated in
[Hartmann et al. 2020], but which is implicitly proved in this reference. To make this clear, we give its
precise statement and we describe the main steps of the proof.

Proposition 4.1. For τ > 0 let Uτ,1/2 be the set defined in (3-2) with g(t)=
√

t . Then there exists δ∗ > 0
such that

8τ (Uτ,1/2)= A2(1,ω0,τ )+ A2(1̃, ωπ,τ ), τ ∈ (0, δ∗), (4-1)

where the weights ω0,τ and ωπ,τ were introduced in (1-8) and (1-9), respectively.

To prove the above result we introduce some notation and state some results from [Hartmann et al.
2020]. We first introduce the families of operators

(Pτ f )(s)=

∫ τ

0

se−s2/(4(τ−σ))

2
√
π(τ − σ)3/2

f (σ )
√
σ dσ, τ ⩾ 0, f ∈ L2

[0, τ ], s ∈1, (4-2)

(Qτ g)(s)=

∫ τ

0

(π − s)e−(π−s)2/(4(τ−σ))

2
√
π(τ − σ)3/2

g(σ )
√
σ dσ, τ ⩾ 0, g ∈ L2

[0, τ ], s ∈ 1̃, (4-3)



902 KARIM KELLAY, THOMAS NORMAND AND MARIUS TUCSNAK

where the sets 1 and 1̃ were introduced in (1-7). Each of the two operators above can be seen as the
input maps of a system governed by the boundary-controlled heat equation on a half-line. Looking, for
instance, to (Pτ )τ⩾0 and setting

wl(t, x)= (Pt f )(x), t ⩾ 0, x ⩾ 0,
we have that 

∂wl

∂t
(t, x)=

∂2wl

∂x2 (t, x), t ⩾ 0, x ⩾ 0,

wl(t, 0)=
√

t f (t), t ∈ [0,∞),

wl(0, x)= 0, x ⩾ 0.

Using results of Aikawa, Hayashi and Saitoh [Aikawa et al. 1990] it was shown in [Hartmann et al. 2020,
Theorem 2.2 and Corollary 2.3] that the following result holds:

Lemma 4.2. For every τ > 0 the operator [
Pτ 0
0 Qτ

]
is bounded and invertible from L2([0, π]))2 onto A2(1,ω0,τ )× A2(1̃, ωπ,τ ). Moreover,∥∥∥∥[

Pτ 0
0 Qτ

]∥∥∥∥
L((L2([0,π ]))2,A2(1,ω0,τ )×A2(1̃,ωπ,τ ))

= 1, τ > 0.

For τ > 0 we introduce the family of operators (Mτ )τ>0 defined by

Mτ

[
u0

uπ

]
=

[
g0(u0)

gπ (uπ )

]
, u0, uπ ∈ L2

[0, τ ], (4-4)

where

g0(u0)(s)=

∫ τ

0

∂K0

∂s
(σ, s)

√
σ u0(σ ) dσ, u0 ∈ L2

[0, τ ], s ∈1, (4-5)

gπ (uπ )(s)=

∫ τ

0

∂Kπ

∂s
(σ, s)

√
σ uπ (σ ) dσ, uπ ∈ L2

[0, τ ], s ∈ 1̃, (4-6)

and the kernels K0 and Kπ were introduced in (3-4) and (3-5), respectively. Comparing the above formulas
with (3-3) we see that

g0(u0)(s)+ gπ (uπ )(s)=8τ

[
v0

vπ

]
(s), s ∈ D, (4-7)

where
v0(t)=

√
t u0(t), vπ (t)=

√
t uπ (t), t ∈ [0, τ ],

and D was defined in (1-3).
Another important estimate proved in [Hartmann et al. 2020] is:

Lemma 4.3. For every τ > 0 the operator Mτ defined in (4-4) is bounded from (L2([0, π]))2 to
A2(1,ω0,τ )× A2(1̃, ωπ,τ ). Moreover,

lim
τ→0+

∥∥∥∥Mτ −

[
Pτ 0
0 Qτ

]∥∥∥∥
L((L2([0,π ]))2,A2(1,ω0,τ )×A2(1̃,ωπ,τ ))

= 0 .
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We are now in a position to prove Proposition 4.1.

Proof of Proposition 4.1. Let ϕ ∈ A2(1,ω0) + A2(1̃, ωπ ), so that there exist ϕ0 ∈ A2(1,ω0) and
ϕπ ∈ A2(1̃, ωπ ) such that ϕ = ϕ0 +ϕπ . By combining Lemmas 4.2 and 4.3 it follows that there exists
δ∗>0 such that the operator Mτ is bounded and invertible from L2([0, π]))2 onto A2(1,ω0)× A2(1̃, ωπ )

for every τ ∈ (0, δ∗). According to the definition (4-4) it follows that for every τ ∈ (0, δ∗) there exist
ũ0, ũπ ∈ L2

[0, τ ] such that∫ τ

0

∂K0

∂s
(σ, s)

√
σ ũ0(σ ) dσ = ϕ0(s), τ ∈ (0, δ∗), s ∈1,∫ τ

0

∂Kπ

∂s
(σ, s)

√
σ ũπ (σ ) dσ = ϕπ (s), τ ∈ (0, δ∗), s ∈ 1̃.

The last two formulas, combined with (3-3) imply that

8τ

[
u0

uπ

]
= ϕ0 +ϕπ = ϕ, τ ∈ (0, δ∗),

where u0(t)=
√

t ũ0(t) and uπ (t)=
√

t ũπ (t) for t ∈ [0, τ ]. The conclusion (4-1) follows now from the
obvious fact that u0, uπ lie in Uτ,1/2. □

Finally, we give below the proof of Theorem 1.1.

Proof. The fact that 8τ is bounded from (L2
[0, τ ])2 to A2(1,ω0,τ )+ A2(1̃, ωπ,τ ) is shown in the proof

of Proposition 2.1 from [Hartmann et al. 2020], but, for the sake of completeness, we make this clear
below.

For u0, uπ ∈ L2
[0, τ ] we note that from (3-3) it follows that(

8τ

[
u0

uπ

])
(x)=

∫ τ/2

0

∂K0

∂x
(τ − σ, x)u0(σ ) dσ +

∫ τ/2

0

∂Kπ

∂x
(τ − σ, x)uπ (σ ) dσ

+

∫ τ

0

∂K0

∂x
(τ − σ, x)ũ0(σ )

√
σ dσ +

∫ τ

0

∂Kπ

∂x
(τ − σ, x)ũπ (σ )

√
σ dσ, (4-8)

where, for γ ∈ {0, π}, we define

ũγ (σ ) :=

{
0 if σ ∈ [0, τ/2],

uγ (σ )/
√
σ if σ ∈ [τ/2, τ ].

(4-9)

It can be checked by direct calculations that (∂Kγ /∂s)(τ − σ, · ) ∈ L2(∂D) for σ ∈ [0, τ/2], where
∂D is the boundary of the open set D defined in (1-3). Hence, by the Cauchy–Schwarz inequality, the
operator 8τ,1, defined by

8τ,1

([
u0

uπ

])
(s)=

∫ τ/2

0

∂K0

∂s
(τ − σ, s)u0(σ ) dσ +

∫ τ/2

0

∂Kπ

∂s
(τ − σ, s)uπ (σ ) dσ, (4-10)

is linear and bounded from (L2
[0, τ ])2 to the Hardy–Smirnov space E2(D) defined in (1-5). On the other

hand it was shown in [Hartmann et al. 2020] that we have E2(D)⊂ Xτ , where

Xτ = A2(1,ω0,τ )+ A2(1̃, ωπ,τ )
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with continuous embedding so that the operator defined in (4-10) is linear and bounded from (L2
[0, τ ])2

to Xτ . The fact that the operator 8τ,2 defined by

8τ,2

([
u0

uπ

])
(s)=

∫ τ

0

∂K0

∂s
(τ − σ, s)ũ0(σ )

√
σ dσ +

∫ τ

0

∂Kπ

∂s
(τ − σ, s)ũπ (σ )

√
σ dσ, (4-11)

with ũ0 and ũπ defined in (4-9), is linear and bounded from (L2
[0, τ ])2 to Xτ follows easily from

Lemma 4.3. Putting together the above estimates and the fact that

8τ =8τ,1 +8τ,2,

we have thus proved (1-12).
The main assertion of Theorem 1.1 which says that the operator 8τ is onto can now be obtained by

putting together several of our previous results. Indeed, let δ∗ be the constant in Proposition 4.1. By
combining Propositions 3.6 and 4.1 it follows that

Ran8δ = A2(1,ω0,δ)+ A2(1̃, ωπ,δ), δ ∈ (0, δ∗).

On the other hand, we know from Propositions 3.4 and 3.7 that Ran8τ = Ran8δ for every τ, δ > 0, and
thus we obtain the conclusion (1-13). □

5. Reachable space with smooth inputs

It can be seen as an obvious consequence of Theorem 1.1 (but it can also be checked in a more elementary
manner) that the well-posed control LTI system determined by (1-1), with state space X = W −1,2(0, π)
and input space U = L2

[0, π], is not exactly controllable in any time τ > 0. A natural question is: can
this system be seen as an exactly controllable one by choosing a different state space (and possibly a class
of smoother input functions)? By analogy with Remark 2.4 (valid for finite-dimensional LTI systems) and
based on our main result in Theorem 1.1, a candidate for the new state space is Xδ = Ran8τ . Indeed,
in our case it is easily checked that Tt(Ran8τ )⊂ Ran8τ for every t ⩾ 0 and τ > 0 and that the family
T̃ = T| Ran8τ satisfies the semigroup properties (2-5) and (2-6). Moreover, it is clear that the pair (T̃,8)
satisfies (2-8). It follows that the only condition still to be checked in order to prove that (T̃,8) is a
well-posed exactly controllable system, with state space Xδ and input space U, is the strong continuity
property of the semigroup T̃ on Xδ. This seems a difficult question. The recently developed theory on
C0-semigroups on spaces of analytic functions (see, for instance, [Gal and Gal 2017]) could provide a
good track for exploring this question.

Motivated by applications to nonlinear problems, [Martin et al. 2016; Laurent and Rosier 2018] study a
controllability concept for the heat equation which is quite different of the exact controllability introduced
in Definition 3.2. More precisely, given τ > 0, the main results in [Martin et al. 2016; Laurent and Rosier
2018] assert that there exist controls u0, uπ having a Gevrey-type regularity on [0, τ ] which steer the
solution of (1-1) to any state which can be holomorphically extended to a ball in C which is centered at π2
and of diameter large enough. We give below a result in the same direction, with less regularity for both
the target states and the input signals. More precisely, our result below gives a complete characterization
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of the states which can be reached by inputs lying in

W n,2
L (0, τ ) :=

{
v ∈ W n,2(0, τ )

∣∣∣ v(0)= · · · =
dn−1v

dtn−1 (0)= 0
}

(5-1)

for some n ∈ N and τ > 0. Moreover, we set W 0,2
L (0, τ ) := L2

[0, τ ].
To state the main result in this section we introduce, for each n ∈ Z+ and τ > 0, the space Xn,τ defined

by X0,τ := Xτ and

Xn,τ :=

{
ψ ∈ Xτ

∣∣∣ d2kψ

ds2k ∈ Xτ for k = 0, 1, . . . , n
}
, n ∈ N, (5-2)

where the family of Banach spaces (Xδ)δ>0 was defined in (1-10) and (1-11). Note that W n,2
L (0, τ ) and

Xn,τ are Banach spaces when endowed with the norms

∥v∥W n,2
L (0,τ ) =

∥∥∥∥dnv

dtn

∥∥∥∥
L2[0,τ ]

, v ∈ W n,2
L (0, τ ),

∥ψ∥
2
Xn,τ

=

n∑
k=1

∥∥∥∥d2kψ

ds2k

∥∥∥∥2

Xn,τ

, ψ ∈ Xn,τ .

Proposition 5.1. Let n ∈ Z+. Then for every τ > 0 the restriction of 8τ to the space W n,2
L (0, τ ) introduced

in (5-1) is a linear bounded operator from W n,2
L (0, τ ) onto Xn,τ , where the Banach space Xn,τ was defined

in (5-2).

Proof. The fact that for every τ > 0 we have 8τ ∈ L(W 0,2
L (0, τ ); X0,τ ) was proven in Theorem 1.1. For

every n ∈ N and u0, uπ ∈ W n,2
L (0, τ ) we define

z(t, · ) :=8t

[
u0

uπ

]
, with t ∈ [0, τ ].

By applying Lemma 2.1 from [Tucsnak and Weiss 2015] it follows that z ∈ Cn([0, τ ]; W −1,2(0, π)) and

∂2kz
∂x2k (τ, x)=

∂kz
∂tk (τ, x), k ∈ {1, . . . , n}, x ∈ (0, π),

∂kz
∂tk (τ, x)=8τ

[
dku0/dtk

dkuπ/dtk

]
(x), k ∈ {1, . . . , n}, x ∈ (0, π).

The two relations above combined with the fact, following from Theorem 1.1, that the maps[
u0

uπ

]
7→8τ

[
dku0/dtk

dkuπ/dtk

]
, k ∈ {0, . . . , n}, u0, uπ ∈ W n,2

L (0, τ ),

are bounded from W n,2
L (0, τ ) into Xτ , yield that indeed 8τ ∈ L(W n,2

L (0, τ ); Xn,τ ).
To show that 8τ maps W n,2

L (0, τ ) onto Xn,τ we begin by noticing that, according to Theorem 1.1, this
holds for n = 0. For n ∈ N we remark that, by using again Theorem 1.1, for every ψ ∈ Xn,τ there exist
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v0, vπ ∈ L2
[0, τ ] with the solution w of

∂w

∂t
(t, x)=

∂2w

∂x2 (t, x), t ⩾ 0, x ∈ (0, π),

w(t, 0)= v0(t), w(t, π)= vπ (t), t ∈ [0,∞),

w(0, x)= 0, x ∈ (0, π),

(5-3)

satisfies

w(τ, x)=
d2nψ

dx2n (x), x ∈ (0, π). (5-4)

Consider the functions ṽ0 and ṽπ defined by

ṽ0(t)=

∫ t

0
v0(σ ) dσ, ṽπ (t)=

∫ t

0
vπ (σ ) dσ, t ∈ [0, τ ]

for n = 1 and

ṽ0(t)=

∫ t

0

∫ σ1

0

∫ σ2

0
· · ·

∫ σn−1

0
v0,n(σn) dσn dσn−1 . . . dσ1, t ∈ [0, τ ],

ṽπ (t)=

∫ t

0

∫ σ1

0

∫ σ2

0
· · ·

∫ σn−1

0
vπ (σn) dσn dσn−1 . . . dσ1, t ∈ [0, τ ]

for n ⩾ 2. We clearly have
ṽ0, ṽπ ∈ W n,2

L (0, τ ) (5-5)

and
dn ṽ0

dtn = v0,
dn ṽπ

dtn = vπ . (5-6)

Let w̃ be the solution of the initial and boundary value problem
∂w̃

∂t
(t, x)=

∂2w̃

∂x2 (t, x), t ∈ [0, τ ], x ∈ (0, π),

w̃(t, 0)= ṽ0(t), w̃(t, π)= ṽπ (t), t ∈ [0, τ ],

w̃(0, x)= 0, x ∈ (0, π).

(5-7)

Thanks to (5-5) and (5-6) and using again Lemma 2.1 from [Tucsnak and Weiss 2015] we have

w̃ ∈ C([0, τ ]; W 2n−1,2(0, π))∩ W n,2([0, τ ]; W −1,2(0, π)),

and ∂nw̃/∂tn
= w, where w is the solution of (5-3)–(5-4). It follows that

∂nw̃

∂tn (τ, x)=
d2nψ

dx2n (x), x ∈ (0, π).

The above relation and the first equation in (5-7) imply that

∂2nw̃

∂x2n (τ, x)=
d2nψ

dx2n (x), x ∈ (0, π).

It follows that
w̃(τ, x)= ψ(x)+ P(x), x ∈ (0, π), (5-8)
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where P is a polynomial of degree 2n − 1. The last formula can alternatively be written

8τ

[
ṽ0

ṽπ

]
= ψ + P. (5-9)

On the other hand, according to Theorem 2 of Laroche, Martin, and Rouchon [Laroche et al. 2000] (see
also [Martin et al. 2016]) there exist ξ0, ξπ ∈ C∞([0, τ ]) such that

8τ

[
ξ0

ξπ

]
= P, (5-10)

dkξ0

dtk (0)=
dkξπ

dtk (0)= 0, k ∈ Z+. (5-11)

Finally, setting
u0 = ṽ0 − ξ0 uπ = ṽπ − ξπ (5-12)

and using (5-9) and (5-10) it follows that u0, uπ ∈ W n,2
L (0, τ ) and they satisfy

8τ

[
u0

uπ

]
= ψ, (5-13)

which ends the proof. □

Let us now introduce, for each n ∈ Z+ and open set �⊂ C, the spaces

A0,2(�) := A2(�), E0,2(�) := E2(�)

and

An,2(�) :=

{
ψ ∈ A2(�)

∣∣∣ d2kψ

ds2k ∈ A2(�) for k = 1, . . . , n
}
, n ⩾ 1,

En,2(�) :=

{
ψ ∈ E2(�)

∣∣∣ d2kψ

ds2k ∈ E2(�) for k = 1, . . . , n
}
, n ⩾ 1,

(5-14)

where the Bergman and Hardy–Smirnov spaces A2(�) and E2(�) were introduced in (1-6) and (1-5),
respectively.

By combining Proposition 5.1 above with Proposition 1.1 and Theorem 1.3 in [Hartmann et al. 2020]
it follows that:

Corollary 5.2. Given n ∈ Z+ we have

En,2(D)⊂8τ (W
n,2
L (0, τ ))⊂ An,2(D), τ > 0,

where D is the open set defined in (1-3).

Remark 5.3. As already mentioned, the main result in [Martin et al. 2016] asserts that functions which
are analytic in a ball centered at π2 and of a radius large enough are reachable by controls lying in the
Gevrey class G2([0, τ ]). Note that the Gevrey class Gγ ([0, τ ]) of order γ > 1 is defined as the set of all
functions g ∈ C∞([0, τ ]) such that for every n ∈ Z+ we have ∥ f (n)∥∞ ⩽ A f Rn

f (n!)γ for some positive
constants A f , R f . We conjecture that this result can be strengthened to the following “analytic” version
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of Proposition 5.1: for every τ > 0 and ψ ∈ Hol(D̃), where D̃ ⊂ C is an open set containing D, there
exist u0, uπ ∈ G2([0, τ ]) such that

8τ

[
u0

uπ

]
= ψ.

A possible approach in proving this conjecture could consist in applying Proposition 5.1 with n → ∞.
This approach would require appropriate estimates of the derivatives, up to order n − 1, of the controls
u0, uπ constructed in Proposition 5.1. Obtaining such estimates is for now an open question.

6. Reachable space and the cost of null controllability

In this section we describe an application of the results and methods developed above in order to obtain
estimates for the cost of null controllability in small time for the system determined by the two first
equations in (1-1). We begin by stating in the general context introduced in Section 3, the definition of
the cost of null controllability. To this aim, let X and U be Hilbert spaces and let (T,8) be a well-posed
control LTI system with state space X and input space U (in the sense of Definition 3.1). Assuming that
the system (T,8) is null controllable in some time τ > 0 (According to Definition 3.2 this means that
Ran8τ ⊃ Ran Tτ .), the cost of null controllability in time τ is the number cτ defined by

cτ = sup
∥ψ∥X⩽1

∥Tτψ∥Ran8τ , (6-1)

where the norm ∥ · ∥Ran8τ was defined in (3-1).
For systems which are null controllable in every time τ > 0 we clearly have that lim supτ→0+ cτ = +∞.

A question of interest in this case is to estimate the blow-up rate of cτ when τ → 0. For finite-dimensional
LTI systems the question was first investigated in [Seidman 1988; Seidman and Yong 1996], where it was
shown that, as τ tends to zero, cτ behaves like 1/τ k+1/2, where k ∈ Z+ is the smallest integer such that

Ran
[
B AB A2 B · · · Ak B

]
= X.

In the case of the system determined by the two first equations in (1-1), which is null controllable in any
positive time (see Proposition 3.7), the study of the behavior of the cost of null controllability when τ→0+

began with the classical work [Fattorini and Russell 1971] and continued with a series of papers including,
with successive improvements, [Güichal 1985; Miller 2004; Tenenbaum and Tucsnak 2007; Lissy 2015;
Dardé and Ervedoza 2019]. As far as we know, the most precise lower bound for cτ when τ → 0+ is

lim sup
τ→0+

τ log cτ ⩽ 1
4κ0π

2, (6-2)

where κ0 is a constant approximately equal to 0.6966. This was proved in [Dardé and Ervedoza 2019].

Remark 6.1. As far as we know, in the case of the heat equation with boundary control at both ends,
there is no specific study of the lower bound of cτ when τ → 0+. This is probably due to the fact that it is
commonly accepted that any lower bound for the cost of null controllability for the case when uπ in (1-1)
is equal to zero yields a lower bound for cτ by “symmetry” arguments (this is, for instance, implicitly
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claimed in [Dardé and Ervedoza 2019]). Accepting this claim yields, using the best known estimates for
the one-sided control (see [Lissy 2015]), that

lim inf
τ→0+

τ log cτ ⩾ 1
8π

2. (6-3)

Since we did not find any obvious argument for deriving (6-3) from the results in [Lissy 2015], we give a
proof of this fact at the end of this paper. More precisely, (6-3) follows from Corollary 8.4 in Section 8
below and Theorem 1.1 in [Lissy 2015].

In this section we prove that for small τ the constant cτ is smaller than a constant dτ , which is simply de-
fined in terms of the semigroup T and of the norm of the space Xτ defined in (1-10). Whether this estimate
can lead to an improvement of the κ0 in (6-2) is an open question, to be treated in a forthcoming work.

To give a precise statement of the main result in this section we note that for every τ > 0 and
ψ ∈ W −1,2(0, π), the function x 7→ (Tτψ)(x) clearly extends to a function which is holomorphic on C, so
that, according to Corollary 3.6 in [Hartmann et al. 2020] (or just using the null controllability of (T,8)
combined with Theorem 1.1) we have that Tτψ ∈ Xτ . We can thus define, for each τ > 0, the constant

dτ = sup
∥ψ∥W−1,2(0,π)⩽1

∥Tτψ∥τ , (6-4)

where T is the heat semigroup and the norm ∥ · ∥τ was defined in (1-11).

Proposition 6.2. With the above notation we have

lim sup
τ→0+

cτ
dτ

⩽ 1. (6-5)

Proof. We have seen above that Tτψ lies in Xτ for every ψ ∈ W −1,2(0, π) and τ > 0 so that we have

(Tτψ)(x)= ϕ0(x)+ϕπ (x), x ∈ (0, π), (6-6)

where ϕ0 ∈ A2(1,ω0,τ ) and ϕπ ∈ A2(1̃, ωπ,τ ) depend on both ψ and τ .
On the other hand, recall the operators Pτ , Qτ and Mτ defined in (4-2), (4-3) and (4-4), respectively.

Using Lemmas 4.2 and 4.3 it follows that there exists δ∗> 0 such that Mτ is invertible for every τ ∈ (0, δ∗)
and

∥M−1
τ ∥L(A2(1,ω0,τ )×A2(1̃,ωπ,τ ),(L2([0,τ ]))2) ⩽

1
1 − γτ

,

where for every τ > 0 we have set

γτ =

∥∥∥∥Mτ −

[
Pτ 0
0 Qτ

]∥∥∥∥
L((L2([0,π ]))2,A2(1,ω0,τ )×A2(1̃,ωπ,τ ))

. (6-7)

Consequently, for each τ ∈ (0, δ∗) and ϕ0 and ϕπ as above there exist v0, vπ ∈ L2
[0, τ ] such that

Mτ

[
v0

vπ

]
=

[
ϕ0

ϕπ

]
,∥∥∥∥[

v0

vπ

]∥∥∥∥
(L2[0,τ ])2

⩽
1

1 − γτ

∥∥∥∥[
ϕ0

ϕπ

]∥∥∥∥
A2(1,ω0,τ )×A2(1̃.ωπ,τ )

. (6-8)
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We can thus conclude, recalling (4-4) and (4-7), that for every ψ ∈ W −1,2(0, π), τ ∈ (0, δ∗) and
ϕ0 ∈ A2(1,ω0,τ ), ϕπ ∈ A2(1̃, ωπ,τ ) satisfying (6-6) there exist v0, vπ ∈ L2

[0, τ ] satisfying (6-8) such that

8τ

[
u0

uπ

]
= Tτψ, (6-9)

where
u0(t)=

√
t v0(t), uπ (t)=

√
t vπ (t), t ∈ [0, τ ].

With no loss of generality we can assume that δ∗ < 1, so that

∥u0∥L2[0,τ ] ⩽ ∥v0∥L2[0,τ ], ∥uπ∥L2[0,τ ] ⩽ ∥vπ∥L2[0,τ ].

We have shown that for every ψ ∈ W −1,2(0, π), τ ∈ (0, δ∗) and ϕ0 ∈ A2(1,ω0,τ ), ϕπ ∈ A2(1̃, ωπ,τ )

satisfying (6-6) there exist u0, uπ ∈ L2
[0, τ ] satisfying (6-9), together with∥∥∥∥[

u0

uπ

]∥∥∥∥
(L2[0,τ ])2

⩽
1

1 − γτ

∥∥∥∥[
ϕ0

ϕπ

]∥∥∥∥
A2(1,ω0,τ )×A2(1̃,ωπ,τ )

, (6-10)

where γτ was defined in (6-7). Since (6-10) holds for every ϕ0 ∈ A2(1,ω0,τ ) and ϕπ ∈ A2(1̃, ωπ,τ )

satisfying (6-6), using (1-11) and (3-1) it follows that

∥Tτψ∥Ran8τ ⩽
1

1 − γτ
∥Tτψ∥τ , ψ ∈ W −1,2(0, π), τ ∈ (0, δ∗). (6-11)

Since by Lemma 4.3 we have that limτ→0+ γτ = 0, the conclusion (6-5) follows from (6-1) and (6-4). □

Remark 6.3. Analyzing the proof of Proposition 6.2 it is easily seen that (6-11) holds with an arbitrary
η ∈ Ran8τ instead of Tτψ . We thus have that

lim sup
τ→0+

∥η∥Ran8τ

∥η∥Xτ
⩽ 1, η ∈ Ran8τ \ {0},

and the existence of a constant K ∗ > 0 such that

∥η∥Ran8τ ⩽ K ∗
∥η∥τ , τ ∈ (0, δ∗), η ∈ Ran8τ .

By the closed graph theorem, it follows that for every τ ∈ (0, δ∗) the norms ∥ · ∥Ran8τ and ∥ · ∥τ are
equivalent.

7. Sums of Bergman spaces on symmetric sectors

The aim of this section is two-fold. We first prove Proposition 1.2 and thus, consequently, Corollary 1.3.
We next connect our results to those obtained recently, with a different methodology, in [Orsoni 2021],
where an apparently different characterization of the reachable space was given. More precisely, the main
result in [Orsoni 2021] asserts that

Ran8τ = A2(1)+ A2(1̃), τ > 0. (7-1)

Putting together (7-1) and Corollary 1.3 it follows that:
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Proposition 7.1. For every δ > 0 we have

Xδ = A2(1)+ A2(1̃), (7-2)

where the spaces (Xδ)δ>0 were defined in (1-10).

The second main aim of this section is to show that Proposition 7.1 follows from Proposition 1.2 and
thus providing a new proof of (7-1).

An essential step in proving Proposition 1.2 is the construction of a family of entire functions (2τ,t)
having the property that if 0< τ < t and t − τ is small enough then the multiplication by 2τ,t defines a
bounded linear operator from Xτ to X t , provided that τ and t are close enough. To this aim, we need
several lemmas involving the families of functions

θτ,t(s) := es2(t−τ)/(4tτ), τ, t ⩾ 0, s ∈1∪ 1̃, (7-3)

θ̃τ,t(s) := e(π−s)2(t−τ)/(4tτ), τ, t ⩾ 0, s ∈1∪ 1̃, (7-4)

2τ,t(s) := θτ,t(s)+ θ̃τ,t(s), τ, t ⩾ 0, s ∈1∪ 1̃. (7-5)

The three functions defined above are, for every τ, t > 0, holomorphic on C and for every s ∈ C we have

θ̃τ,t(s)= θτ,t(π − s), 2τ,t(s)=2τ,t(π − s). (7-6)

Moreover, we have:

Lemma 7.2. Assume t, τ, > 0 are such that
tτ

t − τ
>
π

4
. (7-7)

Then the function 2τ,t defined in (7-5) has no zeros on 1∪ 1̃. Moreover, there exist α , β > 0 ( possibly
depending on τ and t) such that the functions θτ,t and θ̃τ,t defined in (7-3) and (7-4), respectively, satisfy

α ⩽

∣∣∣∣1 +
θ̃τ,t(s)
θτ,t(s)

∣∣∣∣ ⩽ β, s ∈1. (7-8)

Proof. Using the fact that

2τ,t(s)= θτ,t(s)(1 + e(π
2
−2πs)(t−τ)/(4tτ)), τ, t ⩾ 0, s ∈ C, (7-9)

it can be easily checked that 2τ,t vanishes for some s ∈ C if and only if

Re s =
π

2
, Im s ∈

−2tτ
t − τ

+
4tτ

t − τ
Z. (7-10)

On the other hand, for every τ , t satisfying (7-7) we have(
−2tτ
t − τ

+
4tτ

t − τ
Z

)
∩

[
−
π

2
,
π

2

]
= ∅,

which, together with (7-10), implies that indeed 2τ,t has no zeros in 1∪ 1̃.
In order to prove (7-8) we introduce the compact set

K := {s ∈1 | Re s ∈ [0, π]}.
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The function

s 7→ |1 + e(π
2
−2πs)(t−τ)/(4tτ)

|, s ∈ C,

is continuous on K and we have shown above that it is nonvanishing on K . Consequently, there exists
α1 > 0 such that

|1 + e(π
2
−2πs)(t−τ)/(4tτ)

| ⩾ α1, s ∈ K .

For s ∈1 \ K we have Re s > π ; thus

|e(π
2
−2πs)(t−τ)/(4tτ)

| ⩽ e−π2(t−τ)/(4tτ) < 1.

Hence, there exists α2 > 0 such that for every s ∈1\K we have

|1 + e(π
2
−2πs)(t−τ)/(4tτ)

| ⩾ 1 − e−π2(t−τ)/(4tτ) ⩾ α2 > 0.

Setting α := min(α1, α2) > 0 , we obtain the first inequality in (7-8).
Finally, using the fact that Re s ⩾ 0 for every s ∈1, it follows that

|1 + e(π
2
−2πs)(t−τ)/(4tτ)

| ⩽ 1 + eπ
2(t−τ)/(4tτ), s ∈1,

which implies the second inequality in (7-8). □

Lemma 7.3. Let τ , t satisfy the assumptions in Lemma 7.2 and let 2τ,t be the function defined in (7-9).
Then for every f ∈ A2(1;ω0,t) and every f̃ ∈ A2(1̃;ωπ,t) we have

f
2τ,t

∈ A2(1;ω0,τ ),
f̃

2τ,t
∈ A2(1̃;ωπ,τ ).

Proof. Let f ∈ A2(1;ω0,t). We know from Lemma 7.2 that f/2τ,t is holomorphic on 1. Moreover, by
combining (7-9) and Lemma 7.2, it follows that for every s ∈1 we have

| f (s)|2

|2τ,t(s)|2
ω0,τ (s)=

| f (s)|2

|θτ,t(s)|2|1 + e(π2−2πs)(t−τ)/(4tτ)|2
ω0,τ (s)

⩽
1
α2

| f (s)|2

|θτ,t(s)|2
ω0,τ (s)=

t
τα2 | f (s)|2ω0,t(s).

Using our assumptions on f it follows that for every f ∈ A2(1,ω0,t) we have

f
2τ,t

∈ A2(1;ω0,τ ).

Using this fact and (7-6), the corresponding result for f̃ ∈ A2(1̃;ωπ,t) readily follows. □

Lemma 7.4. Let τ , t satisfy the assumptions in Lemma 7.2 and let 2τ,t be the function defined in (7-9).
Let γ, γ ′ > 0 be such that

t − τ

tτ
+

1
γ ′

⩽
1
γ
. (7-11)
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Then for every f ∈ A2(1;ω0,γ ) and every f̃ ∈ A2(1̃;ωπ,γ ) we have

f2τ,t ∈ A2(1;ω0,γ ′), f̃2τ,t ∈ A2(1̃;ωπ,γ ′).

Proof. Let f ∈ A2(1;ω0,γ ). Using Lemma 7.2 it follows that for every s ∈1 we have

| f (s)2τ,t(s)|2ω0,γ ′(s)= | f (s)|2|θt,τ (s)|2
∣∣∣∣1 +

θ̃τ,t(s)
θτ,t(s)

∣∣∣∣2

ω0,γ ′(s)

⩽
β2

γ ′
| f (s)|2eRe(s2)((t−τ)/(2tτ)+1/(2γ ′)) ⩽

β2γ

γ ′
| f (s)|2ω0,γ (s),

which shows that indeed f2τ,t ∈ A2(1;ω0,γ ′). As above, the corresponding result for A2(1̃;ωπ,γ )

follows by symmetry; see (7-6). □

Lemma 7.5. Let τ , t satisfy the assumptions in Lemma 7.2 such that ε := t − τ < τ , and let 2τ,t be the
function defined in (7-9). Moreover, assume that τ > 0 is such that

Xδ = Xτ , 0< δ ⩽ τ. (7-12)

(This holds, in particular, for τ ∈ (0, δ∗), where δ∗ is the constant in Theorem 1.1.) Then X t = Xτ .

Proof. As already mentioned, it is obvious that Xτ ⊂ X t . To prove that X t ⊂ Xτ , let ϕ ∈ A2(1;ω0,t) and
ϕ̃ ∈ A2(1̃;ωπ,t). According to Lemma 7.3 and (7-12) we have

ϕ

2τ,t
+

ϕ̃

2τ,t
∈ Xτ = Xτ−ε,

where ε = t − τ < τ . It follows that there exist f ∈ A2(1;ω0,τ−ε) and f̃ ∈ A2(1̃;ωπ,τ−ε) such that

ϕ

2τ,t
+

ϕ̃

2τ,t
= f + f̃ .

Let γ = τ − ε and γ ′
= τ . Since t ⩾ τ − ε we have

t − τ

tτ
+

1
γ ′

=
ε

tτ
+

1
τ
⩽

ε

(τ − ε)τ
+

1
τ

=
1

τ − ε
=

1
γ
,

so that inequality (7-11) holds. Consequently, using Lemma 7.4 it follows that

ϕ+ ϕ̃ = f2τ,t + f̃2τ,t ∈ A2(1;ω0,τ )+ A2(1̃;ωπ,τ )= Xτ ,

which ends the proof. □

We are now in a position to prove Proposition 1.2.

Proof of Proposition 1.2. Let

I = {τ > 0 | Xδ = Xτ for all δ ∈ (0, τ ]}.
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It is clear that if τ ∈ I then (0, τ ] ⊂ I. From Theorem 1.1 we know that I ⊃ (0, δ∗/2], where δ∗ is the
constant in Theorem 1.1. Let

τ0 := min
(
π

8
,
δ∗

2

)
, m :=

πτ0

π − 4τ0
, ε0 :=

m − τ0

2
.

We clearly have that τ0 ∈ I, ε0 < τ0 and

(τ0 + ε0)τ0

ε0
>
π

4
.

Since the function t 7→ (t + ε0)t/ε0 is clearly increasing on (0,∞), it follows that

(τ + ε0)τ

ε0
>
π

4
, τ > τ0. (7-13)

Consider now the sequence (tn)n∈Z+
defined by t0 = τ0 and

tn+1 = tn + ε0, n ∈ Z+,

which obviously satisfies limn→∞ tn = +∞. Then (7-13) enables us to recursively apply Lemma 7.5 and
obtain that for every n ∈ N we have tn ∈ I and, consequently, X tn = Xτ0 . This shows that I = (0,∞),
which ends the proof. □

As mentioned in the beginning of this section, our second aim here is to give a direct proof of
Proposition 7.1, which provides an alternative proof of (7-1). To this aim, we need the following result:

Lemma 7.6. Let ϕ ∈ A2(1) and ϕ̃ ∈ A2(1̃). Then

ϕ

2π/4,π/2
∈ A2(1;ω0,π/2),

ϕ̃

2π/4,π/2
∈ A2(1̃;ωπ,π/2).

Proof. Let ϕ ∈ A2(1) . We know from Lemma 7.2 that the function 2π/4,π/2 has no zeros in 1∪ 1̃, so
that the function s 7→ ϕ/2π/4,π/2 is holomorphic on 1. Moreover, using (7-9) and again Lemma 7.2 it
follows that for every s ∈1 we have

|ϕ(s)|2

|2π/4,π/2(s)|2
ω0,π/2(s)=

|ϕ(s)|2

|θπ/4,π/2(s)|2|1 + e(π2−2πs)/(2π)|2
ω0,π/2(s)

⩽
1
α2

|ϕ(s)|2

|θπ/4,π/2(s)|2
ω0,π/2(s)=

2
πα2 |ϕ(s)|2,

which implies that ϕ/2π/4,π/2 ∈ A2(1;ω0,π/2). The fact that ϕ̃/2π/4,π/2 ∈ A2(1̃;ωπ,π/2) is obtained
by symmetry using (7-6). □

We are now in a position to prove Proposition 7.1.

Proof of Proposition 7.1. Let ϕ ∈ A2(1) and ϕ̃ ∈ A2(1̃) and let g = ϕ+ ϕ̃. According to Lemma 7.6 and
Proposition 1.2 there exist f ∈ A2(1;ω0,π/4) and f̃ ∈ A2(1̃;ωπ,π/4) such that

g
2π/4,π/2

= f + f̃ .
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Using next Lemma 7.4 with t =
π
2 , τ =

π
4 , γ =

π
4 and γ ′

=
π
2 , it follows that

g = f2π/4,π/2 + f̃2π/4,π/2 ∈ A2(1;ω0,π/2)+ A2(1̃;ωπ,π/2)= Xπ/2.

We have thus shown that
A2(1)+ A2(1̃)⊂ Xπ/2.

Since the inclusion Xπ/2 ⊂ A2(1)+ A2(1̃) is an obvious one, we have

A2(1)+ A2(1̃)= Xπ/2.

The conclusion follow now by using again Proposition 1.2. □

Finally, we remark that by combining Proposition 5.1 with Propositions 1.2 and 7.1 we obtain:

Corollary 7.7. Given n ∈ Z+ and τ > 0 we have

Xn,τ = An,2(1)+ An,2(1̃),

where the Banach spaces Xn,τ and An,2(1) were defined in (5-2) and (5-14), respectively.

8. Comments and related questions

In this section we first discuss the consequences of our results and methods developed in the previous
section on the reachable space of the heat equation with slightly different boundary conditions. Moreover,
we give, as promised in Remark 6.1, a lower bound for the cost of null controllability for the system (1-1)
in terms of the cost of null controllability for the system described by the heat equation on

(
0, π2

)
, with

control acting only at the left end. We next discuss possible extensions and open problems.
We use repeatedly in this section the following simple notation: for every complex-valued function f

defined on
(
0, π2

)
we denote by L f its extension to a function defined on (0, π) obtained by setting

(L f )(x)=

{
f (x), x ∈

(
0, π2

)
,

f (π − x), x ∈
(
π
2 , π

)
.

(8-1)

When there will be no risk of confusion we will identify f and L f .
Concerning the description of the reachable space for other boundary conditions or controls we detail

the case of Dirichlet control at one end, with homogeneous Dirichlet boundary condition at the other end.
For the sake of convenience, we consider the corresponding heat equation on the space interval

(
0, π2

)
,

with control acting at the left end.
More precisely, for every τ > 0 we are interested in the range of the operator 8odd

τ defined as follows:
denoting by y the solution of

∂y
∂t
(t, x)=

∂2 y
∂x2 (t, x)t ⩾ 0, x ∈

(
0, π2

)
,

y(t, 0)= u(t), y
(
t, π2

)
= 0, t ∈ [0,∞),

y(0, x)= 0, x ∈
(
0, π2

)
,

(8-2)

8odd
τ is defined by

8odd
τ u = y(τ, · ), u ∈ L2

[0, τ ]. (8-3)
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Proposition 8.1. For τ > 0 we have

Ran8odd
τ = {η ∈ Ran8τ | η(s)+ η(π − s)= 0 for s ∈1∪ (π −1)}, (8-4)

where 8τ and 1 were defined in (1-2) and (1-7), respectively.

Proof. Let η ∈ Ran8odd
τ and let u ∈ L2

[0, τ ] be such that 8odd
τ u = η. Consequently, the solution y of

(8-2) with u introduced above satisfies

y(τ, x)= η(x), x ∈
(
0, π2

)
. (8-5)

Let
w(t, · )= (Ly)(t, · ), t ∈ [0, τ ], (8-6)

where L is the operator introduced in (8-1). Thanks to the fact that y
(
t, π2

)
= 0, it follows that w satisfies

(1-1), with u0(t)= u(t) and uπ (t)= −u(t). We thus have Lη = w(τ, · ) ∈ Ran8τ so that, identifying η
and Lη, we have thus shown that the inclusion

Ran8odd
τ ⊂ {η ∈ Ran8τ | η(s)+ η(π − s)= 0 for s ∈1∪ (π −1)}

holds for every τ > 0.
To prove the inclusion

{η ∈ Ran8τ | η(s)+ η(π − s)= 0 for s ∈1∪ (π −1)} ⊂ Ran8odd
τ , (8-7)

for every η∈ Ran8τ we denote by u0, uπ ∈ L2
[0, τ ] two controls such that the solutionw of (1-1) satisfies

w(τ, x)= η(x), τ > 0, x ∈ (0, π).

Let
y(t, x)=

1
2(w(t, x)−w(t, π − x)), t ⩾ 0, x ∈ (0, π).

Then y satisfies (1-1) with u0 and uπ replaced by 1
2(u0 − uπ ) and 1

2(uπ − u0), respectively. Since we
clearly have y

(
t, π2

)
= 0 for every t ⩾ 0, it follows that y satisfies (8-2), with u replaced 1

2(u0 − u2π )

and y(τ, x) = η(x) for x ∈
(
0, π2

)
. Consequently, η =

1
28

odd
τ (u0 − uπ ), so that η ∈ Ran8odd

τ . We have
thus proved (8-7), which ends the proof. □

Remark 8.2. The reachable space for the 1-dimensional heat equation with other boundary conditions
and controls (at one or both ends) can also be made completely explicit by using arguments fully similar
to those above (see also Section 5 of [Hartmann et al. 2020]).

If we introduce, for instance, for every τ > 0, the operator 8even
τ defined by

8even
τ u = z(τ, · ), u ∈ L2

[0, τ ], (8-8)

where z satisfies 
∂z
∂t
(t, x)=

∂2z
∂x2 (t, x), t ⩾ 0, x ∈

(
0, π2

)
,

z(t, 0)= u(t),
∂z
∂x

(
t, π2

)
= 0, t ∈ [0,∞),

z(0, x)= 0, x ∈
(
0, π2

)
,

(8-9)
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then for every τ > 0 we have

Ran8even
τ = {η ∈ Ran8τ | η(s)= η(π − s) for s ∈1∪ (π −1)}. (8-10)

We continue this section with two results leading, as promised in Remark 6.1, to a lower bound for
the null controllability cost for the system (1-1) in terms of the cost of the null controllability of the
corresponding system on

(
0, π2

)
(that is (8-2)). To this aim, we first note that the following result holds.

Proposition 8.3. Let τ > 0 and 8τ and 8odd
τ be the operators defined in (1-2) and (8-3), respectively.

Then
∥η∥Ran8odd

τ
⩽ 1

√
2
∥Lη∥Ran8τ , τ > 0, η ∈ Ran8odd

τ , (8-11)

where the operator L was defined in (8-1).

Proof. Let η ∈ Ran8odd
τ . For every u0, uπ ∈ L2

[0, τ ] with

8τ

[
u0

uπ

]
= Lη (8-12)

we set

y(t, x)=
1
2

(
8t

[
u0 − uπ
uπ − u0

])
(x), t > 0, x ∈

(
0, π2

)
.

Then y clearly satisfies (8-2), with u replaced by 1
2(u0 − uπ ). This fact, combined with (8-3) and (8-12),

implies that

η =
1
2
8odd
τ (u0 − uπ ).

Thus for every τ > 0, η ∈ Ran8odd
τ and for every u0, uπ ∈ L2

[0, τ ] satisfying (8-12) we have

∥η∥Ran8odd
τ

⩽ 1
2
∥u0 − uπ∥L2[0,τ ] ⩽

1
√

2

√
∥u0∥

2
L2[0,τ ] + ∥uπ∥

2
L2[0,τ ].

Taking the lower bound of the right-hand side of the above inequality over all the controls u0, uπ ∈ L2
[0, τ ]

satisfying (8-12) we obtain (8-11). □

Corollary 8.4. Let T and Todd be the semigroups on W −1,2(0, π) and W −1,2
(
0, π2

)
generated by the

Dirichlet Laplacians on (0, π) and
(
0, π2

)
, respectively. For τ > 0, let cτ and codd

τ be the costs of null
controllability in time τ for the systems defined by (1-1) and (8-2), respectively. Recalling (6-1), this
means that

cτ = sup
∥ψ∥W−1,2(0,π)⩽1

∥Tτψ∥Ran8τ , (8-13)

codd
τ = sup

∥ψ∥W−1,2(0,π/2)⩽1
∥Todd

τ ψ∥Ran8odd
τ
, (8-14)

where 8τ and 8odd
τ have been defined in (1-2) and (8-3), respectively.

Then
codd
τ ⩽

√
2cτ , τ > 0. (8-15)
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Proof. We first note that the operator L defined in (8-1) satisfies

∥L f ∥W −1,2(0,π) = 2∥ f ∥W −1,2(0,π/2), f ∈ W −1,2(0, π2
)
. (8-16)

Moreover, simple symmetry arguments show that

LTodd
t ψ = Tt Lψ t > 0, ψ ∈ W −1,2(0, π2

)
. (8-17)

Consequently, using consecutively (8-14), Proposition 8.3, (8-17) and (8-16) we have

codd
τ ⩽ 1

√
2

sup
∥ψ∥W−1,2(0,π/2)⩽1

∥Tτ Lψ∥Ran8τ ⩽
1

√
2

sup
∥ϕ∥W−1,2(0,π)⩽2

∥Tτϕ∥Ran8τ , (8-18)

which yields the conclusion (8-15). □

In spite of several recent advances, the study of the reachable space for the 1-dimensional heat equation
with various types of controls still has interesting open questions. We can mention, for instance, the case
of control supported at a point inside the interval (pointwise control), where the methods developed in
the present work might be adapted to describe the dependence of the reachable space on the diophantine
approximation properties of the control location. As far as we know, the case of a control acting on a
subinterval of (0, π) has not been explicitly studied in the literature. However, we think that the methods
and results in [Dardé and Ervedoza 2018] can be adapted to this situation, to yield the reachability of
functions which are holomorphic in any neighborhood of an appropriate domain. Due to the fact that the
use of cut-off functions seems necessary in this situation, we think that the methods developed in our
paper would not allow improving this type of result. Finally, concerning the case of a system described
by the heat equation in a bounded domain of Rn , with control acting on the whole boundary, interesting
advances, which can be seen as generalizations of the main result in [Dardé and Ervedoza 2018], have
been obtained in [Strohmaier and Waters 2022]. However, the question of characterizing in this case the
reachable space in terms of known spaces of function which are analytic on appropriate domains of Cn

seems still a very interesting open question.
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