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Abstract. We consider a semiclassical linear Boltzmann model with a
non-local collision operator. We provide sharp spectral asymptotics for
the small spectrum in the low temperature regime from which we deduce
the rate of return to equilibrium as well as a metastability result. The
main ingredients are resolvent estimates obtained via hypocoercive tech-
niques and the construction of sharp Gaussian quasimodes through an
adaptation of the WKB method.
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1. Introduction

1.1. Motivations

We are interested in the linear Boltzmann equation:
{

h∂tu + v · h∂xu − ∂xV · h∂vu + QH(h, u) = 0
u|t=0 = u0

(1.1)

in a semiclassical framework (i.e., in the limit h → 0), where h is a semiclas-
sical parameter and corresponds to the temperature of the system. Here, we
denoted for shortness ∂x and ∂v the partial gradients with respect to x and v.
This equation is used to model the evolution of a system of charged particles
in a gas on which acts an electrical force associated with the real-valued poten-
tial V that only depends on the space variable x. The interactions between
the particles are modeled by the linear operator QH which is called collision
operator. Here, the unknown is the function u : R+ → L1(R2d) giving the
probability density of the system of particles at time t ∈ R+, position x ∈ R

d

and velocity v ∈ R
d. For our purpose, we introduce the square roots of the

usual Maxwellian distributions

μh(v) =
e− v2

4h

(2πh)d/4
and Mh = e− V

2h μh. (1.2)

In many models, we have

QH(h,M2
h) = 0 and Q∗

H(h, 1) = 0 (1.3)

so in particular M2
h is a stable state of (1.1). In order to do a perturbative

study of the time independent operator associated with (1.1) near M2
h, we

introduce the natural Hilbert space

H =
{
u ∈ D′; M−1

h u ∈ L2(R2d)
}
.

It is clear from the Cauchy–Schwarz inequality that H is indeed a subset of
L1(R2d) provided that e− V

2h ∈ L2(Rd
x). In view of (1.3) and the definition of

H, it is more convenient to work with the new unknown

f = M−1
h u : R+ → L2(R2d)

for which the new equation becomes
{

h∂tf + v · h∂xf − ∂xV · h∂vf + Qh(f) = 0
f|t=0 = f0

(1.4)

where

Qh = M−1
h ◦ QH(h, ·) ◦ Mh.
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Our study will be focused on the new time independent operator

Ph = v · h∂x − ∂xV · h∂v + Qh

= Xh
0 + Qh

for some specific choices of the collision operator Qh, where the notation Xh
0

will stand for the operator v · h∂x − ∂xV · h∂v, but also for the vector field
(x, v) �→ h(v,−∂xV (x)). There are plenty of different collision operators stud-
ied in the literature, their main properties being that these are symmetric inte-
gral operators acting as multiplicators in the position variable x and canceling
the Maxwellian distribution. Our work is in particular motivated by the study
of the mild relaxation operator introduced in [19] and given by H0(1 + H0)−1

with H0 the harmonic oscillator in velocity defined by

H0 = −h2Δv +
v2

4
− hd

2
. (1.5)

In this spirit, the collision operators we will be working with will always be
bounded and self-adjoint so, (Xh

0 , C∞
c (R2d)) being essentially skew-adjoint, the

operator Ph (endowed with the appropriate domain) is maximal accretive and
(1.4) is well-posed. More generally, some interesting cases of collision operators
are given by functions of H0 (see, for instance, [9,13–15,19]) which is the setting
that we will adopt.

This paper is concerned with the spectral study of the operator Ph. This
type of questions has recently known some major progress on the impulse of
microlocal methods. In the case of the linear Boltzmann equation (1.4), the
use of hypocoercive techniques in 2015 in [20] enabled to get some resolvent
estimates and establish a rough localization of the small spectrum of Ph which
consists of exponentially small eigenvalues in correspondence with the minima
of the potential V . This type of result is similar to the one obtained for example
for the Witten Laplacian by Helffer and Sjöstrand in [7] in the 1980s. Such
a localization already leads to return to equilibrium and metastability results
which can be improved as the description of the small spectrum becomes more
precise. For example, sharp asymptotics of the small eigenvalues of the Witten
Laplacian were obtained later in the 2000s in [2,6] and later again for Kramers–
Fokker–Planck-type operators by Hérau et al. in [10]. In these papers, the idea
was to exhibit a supersymmetric structure for the operator and then study both
the derivative acting from 0-forms into 1-forms and its adjoint with the help
of basic quasimodes. In [19], Robbe managed to show that the Boltzmann Eq.
(1.4) with mild relaxation enjoys such a supersymmetric structure. However, in
that case, the matrix appearing in the modification of the inner product does
not obey good estimates with respect to the semiclassical parameter h. This is
why our goal here will be to give precise spectral asymptotics for the operator
Ph through a more recent approach which consists in directly constructing a
family of accurate quasimodes for our operator in the spirit of [1,12].

The aim of this paper is twofold. In a first time, we want to prove a
result similar to the one obtained by Robbe in [20] but for a large class of
collision operators. The second goal is to provide complete asymptotics of the
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small eigenvalues of Ph as it was done in [6] for the Witten Laplacian or in
[10,11] with recent improvements by Bony et al. in [1] in the case of Fokker–
Planck-type differential operators. We manage to establish such results for
Eq. (1.4) for a class of pseudo-differential collision operators presenting nice
symbol properties as well as a factorized structure.

1.2. Setting and Main Results

For d′ ∈ N
∗ and Z ∈ C

d′
, we use the standard notation 〈Z〉 = (1 + |Z|2)1/2.

In this paper, we will treat the case of collision operators of the form

Qh = �(H0)

with � satisfying the following:

Hypothesis 1.1. The function � : R+ → R+ vanishes at the origin and for all
t ≥ 0,

�(t) ≥ 1
C

t

〈t〉 .

Moreover, it admits an analytic extension to {Re z > − 1
C } for which there

exist �∞ ∈ R+ and α > 0 such that �(z) = �∞ + O(〈z〉−α).

In particular, Qh will be bounded uniformly in h and self-adjoint. An example
of such collision operator is the mild relaxation operator introduced in [19] and
given by H0(1 + H0)−1. In order to state the consequences of Hypothesis 1.1,
let us introduce a few notations of semiclassical microlocal analysis which will
be used in all this paper. These are mainly extracted from [21], chapter 4. We
will denote Ξ ∈ R

d′
the dual variable of X and use the semiclassical Fourier

transform

Fh(f)(Ξ) =
∫

Rd′
e− i

h X·Ξf(X) dX.

We consider the space of semiclassical symbols

Sκ
(〈(X,Ξ)〉k

)
=
{
ah ∈ C∞(R2d′

) ; ∀α ∈ N
2d′

,∃Cα > 0 such that |∂αah(X,Ξ)|
≤ Cαh−κ|α|〈(X,Ξ)〉k

}

where k ∈ R and κ ∈ [0, 1/2]. Note that those symbols are allowed to depend
on h; however, in order to shorten the notations, we will drop the index h in
the rest of the paper when dealing with semiclassical symbols. Given a symbol
a ∈ Sκ(〈(X,Ξ)〉k), we define the associated semiclassical pseudo-differential
operator for the Weyl quantization acting on functions u ∈ S(Rd′

) by

Oph(a)u(X) = (2πh)−d′
∫

Rd′

∫

Rd′
e

i
h (X−X′)·Ξa

(X + X ′

2
,Ξ
)
u(X ′) dX ′dΞ

where the integrals may have to be interpreted as oscillating integrals. We will
denote Ψκ(〈(X,Ξ)〉k) the set of such operators. In our setting, we will denote ξ
(resp. η) the dual variable of x (resp. v). We also need to introduce the notion
of analytic symbols. For our purpose, we almost always consider symbols that
do not depend on the variable ξ.
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Definition 1.2. For τ > 0, let us introduce the set

Στ = {z ∈ C ; |Im z| < τ}d ⊂ C
d.

For k ∈ R, we denote S0
τ (〈(x, v, η)〉k) the space of symbols ah ∈ S0(〈(x, v, η)〉k)

independent of ξ such that:

(i) For all (x, v) ∈ R
2d, ah(x, v, ·) is analytic on Στ

(ii) For all β ∈ N
2d, there exists Cβ > 0 such that |∂β

(x,v)ah| ≤ Cβ〈(x, v, η)〉k

on R
2d × Στ .

We will also use the notation ah = OS0
τ (〈(x,v,η)〉k)(hN ) to say that for all

α ∈ N
3d, there exists Cα,N such that |∂αah| ≤ Cα,N hN 〈(x, v, η)〉k on R

2d×Στ .

Here again, we will drop the index h in the notations of analytic symbols.
Using the Cauchy–Riemann equations, we see that item (i) from Definition
1.2 implies that for all β ∈ N

2d and (x, v) ∈ R
2d, the functions ∂β

(x,v)a(x, v, ·)
are also analytic on Στ . Besides, the Cauchy formula implies that for any
τ̃ < τ , α ∈ N

d and β ∈ N
2d, there exists Cα,β such that

|∂α
η ∂β

(x,v)a| ≤ Cα,β〈(x, v, η)〉k on R
2d × Στ̃

, i.e., up to taking τ smaller, item (ii) from Definition 1.2 can be extended
to β ∈ N

3d. Let us introduce a notion of expansion where the coefficients are
allowed to depend on h: We will say that

a ∼h

∑

j≥0

hjaj (1.6)

in S0(〈(x, v, η)〉k) (resp. in S0
τ (〈(x, v, η)〉k)) if (aj)j≥0 ⊂ S0(〈(x, v, η)〉k) (resp.

(aj)j≥0 ⊂ S0
τ (〈(x, v, η)〉k)) is a family of symbols which may depend on h and

are such that for all N ∈ N,

a −
N−1∑

j=0

hjaj = OS0(〈(x,v,η)〉k)(h
N )

(
resp. OS0

τ (〈(x,v,η)〉k)(h
N )
)

Finally, we also have the usual notion of classical expansion for a symbol:
a ∼ ∑j≥0 hjaj in S0(〈(x, v, η)〉k) (resp. in S0

τ (〈(x, v, η)〉k)) means that a ∼h∑
j≥0 hjaj in S0(〈(x, v, η)〉k) (resp. in S0

τ (〈(x, v, η)〉k)) and the (aj)j≥0 are
independent of h.

We now extend these notions to matrix-valued symbols: If

M = (mp,q)
1≤p≤n1
1≤q≤n2

is a matrix of functions such that each mp,q ∈ Sκ(〈(x, v, η)〉k) (resp.
mp,q ∈ S0

τ (〈(x, v, η)〉k)), we say that M ∈ Mn1,n2

(
Sκ(〈(x, v, η)〉k)

) (
resp.M ∈

Mn1,n2

(
S0

τ (〈(x, v, η)〉k)
))

and we denote

Oph(M) =
(
Oph(mp,q)

)

1≤p≤n1
1≤q≤n2

.
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The notation

M = OMn1,n2

(
S0(〈(x,v,η)〉k)

)(hN )
(
resp. M = OMn1,n2

(
S0

τ (〈(x,v,η)〉k)
)(hN )

)

means that for all (p, q) ∈ �1, n1�×�1, n2�, the symbol mp,q is OS0(〈(x,v,η)〉k)(hN )
(resp. OS0

τ (〈(x,v,η)〉k)(hN )). Furthermore, the notions of expansions M ∼h∑
n≥0 hnMn and M ∼∑n≥0 hnMn in Mn1,n2

(
S0(〈(x, v, η)〉k)

) (
resp.Mn1,n2(

S0
τ (〈(x, v, η)〉k)

))
are straightforward adaptations of the ones for scalar sym-

bols.
These notions enable us to introduce a new class of collision operators

which appears to be more general that the one given by Hypothesis 1.1. Let
us denote bh the twisted derivative

bh = h∂v + v/2 (1.7)

so that in particular with the notation (1.5) we have H0 = b∗
hbh. We also use

the standard notation Md(R) for the set of all d-by-d real matrices.

Hypothesis 1.3. There exist τ > 0 and a symmetric matrix of analytic symbols

Mh(x, v, η) =
(
mp,q(x, v, η)

)
1≤p,q≤d

∈ Md

(
S0

τ (〈(v, η)〉−2)
)

sending R
3d into Md(R) and such that, with the notation (1.7), the collision

operator Qh satisfies
(a) Qh = b∗

h ◦ Oph(Mh) ◦ bh

(b) Mh ∼∑n≥0 hnMn in Md

(
S0

τ (〈(v, η)〉−2)
)

(c) For all (x, v, η) ∈ R
3d, Mh(x, v, η) = Mh(x, v,−η)

(d) For all (x, v, η) ∈ R
3d, M0(x, v, η) ≥ 1

C 〈(v, η)〉−2 Id.

Since the (Mn)n do not depend on h, we easily get that these matrices of
symbols are also even in η, symmetric, independent of ξ and with values in
Md(R); so in particular item d) makes sense. This will enable us to establish
Lemma 2.1 which is sometimes referred to as microscopic coercivity (see, for
instance, [5]). As announced, we have the following lemma which is proven in
Appendix 6:

Lemma 1.4. Hypothesis 1.1 implies Hypothesis 1.3.

We will also make a few confining assumptions on the function V , assuring,
for instance, that the bottom spectrum of the associated Witten Laplacian is
discrete. In particular, our potential will satisfy Assumption 2 from [12] and
Hypothesis 1.1 from [20].

Hypothesis 1.5. The potential V is a smooth Morse function depending only
on the space variable x ∈ R

d with values in R which is bounded from below and
such that

|∂xV (x)| ≥ 1
C

for |x| > C.

Moreover, for all α ∈ N
d with |α| ≥ 2, there exists Cα such that

|∂α
x V | ≤ Cα.
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In particular, for every 0 ≤ k ≤ d, the set of critical points of index k of V
that we denote U (k) is finite and we set

n0 = #U (0). (1.8)

Finally, we will suppose that n0 ≥ 2.

The last assumption comes from the fact that when n0 = 1, the so-called
small spectrum of the operator Ph (i.e., its eigenvalues with exponentially small
modulus) is trivial, so there is nothing to study. It is shown in [16], Lemma 3.14
that for a function V satisfying Hypothesis 1.5, we have V (x) ≥ |x|/C outside
of a compact. In particular, under Hypothesis 1.5, it holds e−V/2h ∈ L2(Rd

x).
Moreover, in our setting, Xh

0 is a smooth vector field whose differential is
bounded on R

2d, so the operator Xh
0 endowed with the domain

D = {u ∈ L2(R2d) ; Xh
0 u ∈ L2(R2d)} (1.9)

is skew-adjoint on L2(R2d) and the set S(R2d) is a core for this operator.
Therefore, (Ph,D)∗ = (−Xh

0 + Qh,D) and (Ph,D) is m-accretive on L2(R2d).
For an operator such as Ph, which is not, for instance, self-adjoint with

compact resolvent, we do not have any information a priori on its spectrum
(except here that it is contained in {z ∈ C ; Re z ≥ 0}). Section 2 is thus
devoted to establishing a first description of the spectrum of Ph near 0 which,
in the spirit of the case of other non self-adjoint operators studied in [10,20],
appears in particular to be discrete:

Theorem 1.6. Assume that Hypotheses 1.3 and 1.5 are satisfied and recall the
notation (1.8). Then, the operator (Ph,D) admits 0 as a simple eigenvalue.
Moreover, there exist c > 0 and h0 > 0 such that for all 0 < h ≤ h0,
Spec(Ph)∩{Re z ≤ ch2} consists of exactly n0 eigenvalues (counted with alge-
braic multiplicity) that are exponentially small with respect to 1/h and for all
0 < c̃ ≤ c, the resolvent estimate

(Ph − z)−1 = O(h−2)

holds uniformly in {Re z ≤ ch2}\B(0, c̃h2). Finally, except for 0, the real parts
of these small eigenvalues are positive.

This result can be seen as a generalization of Theorem 3.0.2 from [19] (up to
the h2 instead of h) as we saw that the mild relaxation operator (which is
the collision operator studied in this reference) satisfies our hypotheses. In our
case, we get a localization of order h2 because we adopt a simpler proof based
on hypocoercivity (inspired by [20]) than the one presented in [19].

In order to study the long time behavior of the solutions of (1.4), we need
a precise description of the small spectrum of Ph. To this aim, we construct
in Sects. 3 and 4 in the spirit of the WKB method a family of accurate quasi-
modes localized around the minima of V that enables us to establish sharp
asymptotics of the small eigenvalues of Ph. This leads in Sect. 5 to the estab-
lishment of Theorem 1.8 which is the main result of this paper. For the sake
of simplicity, we make in the statement an additional assumption (Hypothesis
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3.11) on the topology of the potential V that could actually be omitted (see
[17] or [1]). It implies in particular that V has a unique global minimum that
we denote m. In order to be able to state our main result, we give the following
lemma which is actually a consequence of Proposition 4.7 and Lemma 4.8.

Lemma 1.7. Recall the matrix M0 from Hypothesis 1.3 and let m ∈ U (0)\{m}
and s ∈ j(m) where j is the topological map defined in 3.10. The matrix

Φs =
(

0 −HesssV
Id M0(s, 0, 0)

)

has only one eigenvalue in {Re z < 0} which is actually real and that we denote
−αs

0.

According to Theorem 1.6, we can associate with each m ∈ U (0)\{m} a
nonzero exponentially small eigenvalue of Ph that we denote λ(m, h).

Theorem 1.8. Suppose that Hypotheses 1.3, 1.5 and 3.11 are satisfied and recall
the notation αs

0 from Lemma 1.7. The exponentially small eigenvalues of Ph

satisfy the following formula:

λ(m, h) = he−2 S(m)
h

det(HessmV )1/2

2π
Bh(m)

where Bh(m) admits a classical expansion whose first term is
∑

s∈j(m)

|det(HesssV )|−1/2 αs
0

and the maps S and j are defined in Definition 3.10.

When Hypothesis 1.3 is replaced by Hypothesis 1.1, we can give a slightly
more precise statement. In that case, denoting μs the only negative eigenvalue
of HesssV , the first term of Bh(m) is

1
2

∑

s∈j(m)

|det(HesssV )|−1/2
(

− �′(0) +
√

�′(0)2 − 4μs

)
. (1.10)

Indeed, under Hypothesis 1.1, it is shown in Appendix 6, more precisely in
(A.13) that M0(s, 0, 0) = �̃(0) Id = �′(0) Id. Thanks to Proposition 4.7 from
which we keep the notations, we then have

HesssV ν2 = −�′(0)2(1 + ν2
2)ν2

2 ν2

and consequently

αs
0 = �′(0)ν2

2 = −�′(0)
2

+

√
�′(0)2 − 4μs

2
so the statement follows.

Remark 1.9. The case of the Fokker–Planck operator, i.e., when �(t) = t and
Mh = Id, is not covered by Theorem 1.8 as it does not fit its hypotheses.
However, formally applying our formula (1.10) to this case, we still recover
the one from [1,10] for this operator. (Be careful that our notation μs and the
notation μ(s) from [1] do not stand for the same object.)
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Finally, Sect. 6 consists in using the sharp localization obtained in The-
orem 1.8 in order to discuss the phenomena of return to equilibrium and
metastability for the solutions of (1.4). More precisely, we are able to give
a sharp rate of convergence of the semigroup e−tPh/h toward P1, the orthog-
onal projector on Ker Ph: Denoting λ∗ a nonzero eigenvalue of Ph whose real
part is minimal, we establish that the rate of return to equilibrium is essentially
given by Reλ∗/h:

Corollary 1.10. Under the assumptions of Theorem 1.8, for any N ≥ 1, there
exist CN > 0 and h0 > 0 such that for all 0 < h ≤ h0 and t ≥ 0,

‖e−tPh/h − P1‖ ≤ CNe−t Re λ∗(1−CN hN )/h.

Moreover, if λ∗ does not share its expansion given by Theorem 1.8 with another
eigenvalue of Ph (in particular it is a simple eigenvalue), then λ∗ is real and
we even have

‖e−tPh/h − P1‖ ≤ Ce−tλ∗/h.

Besides, in the spirit of [1], we also show the metastable behavior of the solu-
tions of (1.4):

Corollary 1.11. Suppose that the assumptions of Theorem 1.8 hold true. Let
us consider some local minima m1 = m, m2, . . . , mK such that

S
(U (0)

)
= {+∞ = S(m1) > S(m2) > · · · > S(mK)}

for the map S from Definition 3.10. For 2 ≤ k ≤ K, denote Pk the spectral
projection associated with the eigenvalues that are O

(
e−2

S(mk)
h

)
. Then for any

times (t±k )1≤k≤K satisfying

t−K ≥ h−1| ln(h∞)| and t−k ≥ | ln(h∞)|e2
S(mk+1)

h for k = 1, . . . ,K − 1

as well as

t+1 = +∞ and t+k = O
(
h∞e2

S(mk)
h

)
for k = 2, . . . , K

one has

e−tPh/h = Pk + O(h∞) on [t−k , t+k ].

In other words, we have shown the existence of timescales on which, during its
convergence toward the global equilibrium, the solution of (1.4) will essentially
visit the metastable spaces associated with the small eigenvalues of Ph.

The results presented in this paper should be reasonably easy to adapt
to the case of collision operators satisfying Hypothesis 1.3 with the space S0

replaced by Sκ for κ ∈ [0, 1/2[. (We should get some expansions in powers
of h1−2κ instead of just h.) Another perspective would then be to study the
critical case κ = 1/2 which should in particular cover the linear relaxation
collision operator corresponding to the linear BGK model

Qh = h(1 − Πh) (1.11)
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where, using the notation (1.2),

Πh : L2(R2d) → L2(R2d) (1.12)

denotes the orthogonal projection on

Eh = μh L2(Rd
x) (1.13)

and for which Robbe gave a first localization of the small spectrum of the
associated operator Xh

0 + Qh in [20].

2. Rough Description of the Small Spectrum

Throughout the paper, we assume that Hypotheses 1.3 and 1.5 hold true. This
implies in particular that Qh is bounded uniformly in h and self-adjoint in
L2(R2d). Let us begin with a lemma which consists in comparing our collision
operator with the one introduced in (1.11) and studied in [20]. This will in
particular enable us to use some computations from [20] later on.

Lemma 2.1. There exists h0 > 0 such that for all 0 < h < h0,

Qh ≥ h

C
(1 − Πh)

where Πh is the projection introduced in (1.12). In particular, Qh is nonnega-
tive.

Proof. Since the space Eh defined in (1.13) is contained in KerQh, it is enough
to prove that 〈Qhu, u〉 ≥ h

C ‖u‖2 for u ∈ E⊥
h . Let u ∈ E⊥

h and recall the
notations H0 and H1 from (1.5) and (A.4). Let us consider an approximate
square root A of (1 + H1) given by

A = Oph

((
1 + v2/4 + η2 + h(1 − d/2)

)1/2Id
)

∈ Ψ0
(〈(v, η)〉).

By symbolic calculus, we easily have A2 = 1 + H1 + h2R1 with R1 ∈
Ψ0
(〈(v, η)〉2). Besides, the symbol of A is clearly elliptic so A is invert-

ible and its inverse is also a pseudo-differential operator satisfying A−2 =
(1+H1)−1 +h2R2 with R2 ∈ Ψ0

(〈(v, η)〉−2
)

(see, for instance, [4], chapter 8).
Thus, using the factorization from Hypothesis 1.3 and the self-adjointness of
A, we get

〈Qhu, u〉 =
〈
AOph(Mh)AA−1bhu , A−1bhu

〉
.

Now according to Hypothesis 1.3 and symbolic calculus again, the principal
symbol of AOph(Mh)A is elliptic so we can use the G̊arding inequality to
write

〈Qhu, u〉 ≥ 1
C

〈
A−2bhu , bhu

〉

≥ 1
C

〈
b∗
h(1 + H1)−1bhu , u

〉− h2

C

∣
∣〈b∗

h R2 bhu , u
〉∣∣.
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Still using symbolic calculus, we get b∗
h R2 bh = O(1) so applying (A.5) we

finally have

〈Qhu, u〉 ≥ 1
C

〈
H0(1 + H0)−1u , u

〉− O(h2)‖u‖2

and the conclusion comes from the fact that the spectrum of H0(1+H0)−1|E⊥
h

is contained in [h/C,+∞[.

We can already prove that 0 is a simple eigenvalue of (Ph,D) and that
the other eigenvalues have positive real part. It is easy to check that Mh

defined in (1.2) is in KerPh. Now, let λ ∈ R and let us prove that for u ∈ Ker
(Ph − iλ), one has u ∈ CMh. Since Xh

0 is skew-adjoint and Qh is self-adjoint
and nonnegative, we have

0 = Re〈(Ph − iλ)u, u〉 = ‖Q
1/2
h u‖2

so in particular u ∈ Ker Qh = Eh according to Lemma 2.1. Therefore, u = wμh

with w ∈ L2(Rd
x) and using that μ−1

h Xh
0 u = iλw does not depend on v, we get

in the sense of distributions ∂x(eV/2hw) = 0 which yields the desired result.

2.1. Hypocoercivity

Let us now use the dilatation operators

Sh :

⎧
⎨

⎩

L2(R2d) → L2(R2d)

u �→ h−d/2u
( .√

h
,

.√
h

) Th :

⎧
⎨

⎩

L2(Rd
x) → L2(Rd

x)

u �→ h−d/4u
( .√

h

)

that were introduced in [20] in which these were combined with a scaling of Πh

to conjugate Ph to a non-semiclassical operator with h-dependent potential.
In our case, it will enable us to use some computations and results already
established in [20].

Lemma 2.2. Recall the notation (1.9). Denoting

X0 = v · ∂x − ∂xVh(x) · ∂v

where Vh = h−1V (
√

h ·),
Q̃1 = h−1S−1

h QhSh

and

Dom (P ) = {u ∈ L2(R2d) ; X0u ∈ L2(R2d)}, P = X0 + Q̃1,

one has

(hP, Dom(P )) = (S−1
h PhSh, S−1

h D).

Moreover,

(hP, Dom(P ))∗ = (S−1
h P ∗

hSh, S−1
h D).
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Proof. We have for u ∈ L2(R2d)

hX0u = S−1
h Xh

0 Shu

so using that Sh is bounded we get Dom (P ) = S−1
h D. Consequently,

(hP, Dom(P )) = (S−1
h PhSh, S−1

h D)

and the result for the adjoint follows immediately.

We also recall the notations of the following differential operators from
[9,20]:

a = ∂x +
∂xVh

2
; b = ∂v +

v

2
and Λ2 = a∗a + b∗b + 1.

The operator (Λ2, C∞
c (R2d)) is essentially self-adjoint. The Schwartz space

S(R2d) is included in the domain of its self-adjoint extension (Λ2,D(Λ2)) which
is invertible. We can then define the operator

L = Λ−2a∗b (2.1)

which is bounded uniformly in h (see [20], Lemma 2.7), as well as the pertur-
bation hε(L + L∗) = O(h) where ε > 0 will be chosen small enough later.

Besides, notice that a∗a = −Δx + |∂xVh|2/4 − ΔVh/2 =: ΔVh/2 is the
Witten Laplacian in x associated with the potential Vh/2 and that

Δh
V/2 := hTha∗aT−1

h

= −h2Δx + |∂xV |2/4 − hΔV/2

is the semiclassical Witten Laplacian associated with the potential V/2. The
small spectrum of this operator was first studied by Helffer and Sjöstrand in [7],
and we now know (see, for instance, [6], Definition 4.3) that we can construct
an orthonormal family (ϕj)1≤j≤n0 ⊂ C∞

c (Rd
x) of quasimodes associated with

this operator given by

ϕj = χje− V −V (xj)
2h

where xj is one of the local minima of V and χj is a cutoff function localizing
around xj . Recall the notation μh from (1.2) and let us now define the families
of functions

gh
j = ϕjμh and gj = S−1

h gh
j

for 1 ≤ j ≤ n0. These are actually quasimodes for our operators Ph and P ∗
h :

Lemma 2.3. The family (gh
j )1≤j≤n0 is orthonormal, and there exists α > 0

such that for all 1 ≤ j ≤ n0,

Phgh
j = OL2(e− α

h ), P ∗
hgh

j = OL2(e− α
h ).

Moreover, Phgh
j and P ∗

hgh
j are in S(R2d) ⊆ D and we have

P ∗
hPhgh

j = OL2(e− α
h ), PhP ∗

hgh
j = OL2(e− α

h ).

Proof. The proof is the same as the one of Lemma 2.4 from [20] since with the
notation (1.13) and Lemma 2.1 we also have Eh = Ker Qh.
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One of the key results of this section is that the real part of the perturba-
tion of our operator is bounded from below on a subspace of finite codimension
given by the orthogonal of the quasimodes. In order to state it, recall the nota-
tion (2.1) and denote N±

h,ε the bounded self-adjoint operator

Id ± εh(L + L∗).

Proposition 2.4. There exists ε > 0 and h0 > 0 such that for all h ∈]0, h0] and
u ∈ S(R2d) ∩ (gj)⊥

1≤j≤n0
, one has

Re〈N+
h,εPu, u〉 ≥ h

C
‖u‖2

as well as

Re〈N−
h,εP

∗u, u〉 ≥ h

C
‖u‖2.

Proof. One has for u ∈ S(R2d), using the fact that X0 is skew-adjoint:

Re〈N+
h,εPu, u〉 = Re〈Pu,N+

h,εu〉
= Re〈Q̃1u,N+

h,εu〉 + Re〈X0u,N+
h,εu〉

= ‖Q̃1/2
1 u‖2 + hεRe〈Q̃1u, (L + L∗)u〉 + hεRe〈X0u, (L + L∗)u〉

= ‖Q̃1/2
1 u‖2 + hεRe〈Q̃1u, (L + L∗)u〉 + hεRe〈[L,X0]u, u〉

= I + hII + hIII

Note that if we replace P by P ∗ and N+
h,ε by N−

h,ε, we get I − hII + hIII.
Besides, it is also proven in [20] that

[L,X0] = A + Λ−2a∗a

where A is also bounded uniformly in h. Since ‖Qh‖ ≤ C and Qh ≥ h
C (1−Πh)

according to Lemma 2.1, we get ‖Q̃1‖ ≤ C
h and Q̃1 ≥ 1

C (1 − Π1). Hence,

I ± hII ≥ I − h|II|
≥ ‖Q̃1/2

1 u‖2 − hε‖Q̃1u‖‖(L + L∗)u‖
≥ ‖Q̃1/2

1 u‖2 −
√

Ch
1
2 ε‖Q̃1/2

1 u‖‖(L + L∗)u‖
≥ 1

2
‖Q̃1/2

1 u‖2 − 2Chε2‖L‖2‖u‖2

≥ 1
2C

‖(1 − Π1)u‖2 − 2Chε2‖L‖2‖u‖2 (2.2)

We can combine this with the following estimate from [20] (proof of Proposition
2.5): There exists δ > 0 such that for u ∈ (gj)⊥

1≤j≤n0
,

III ≥ −1
4
‖(Id − Π1)u‖2 − ε2‖A‖2‖u‖2 +

εδ

4
‖Π1u‖2 − ε‖(Id − Π1)u‖2.



T. Normand Ann. Henri Poincaré

This yields for ε < δ
4(‖A‖2+C‖L‖2) that

I ± hII + hIII ≥ 1
C

‖(Id − Π1)u‖2 + h
εδ

4
‖Π1u‖2 − hε2

(
‖A‖2 + C‖L‖2

)
‖u‖2

≥ h

C
‖u‖2. (2.3)

so the proof is complete.

This result extends to u ∈ (gj)⊥
1≤j≤n0

∩ Dom (P ) since S(R2d) is a core for
both (P,Dom (P )) and (P ∗,Dom (P ∗)). It only differs from Proposition 2.5
in [20] by a factor h in the estimate. This comes from the fact that in our
case, Q̃1 = O(h−1) and not O(1) (because Qh = O(1) and not O(h)) so we
have to use a perturbation of order h (the operator N±

h,ε) to obtain the gain
in ‖(1 − Π1)u‖2 in (2.2). As a consequence, the gain in ‖Π1u‖2 from (2.3) is
of order h and not of order 1.

Corollary 2.5. There exists c > 0 and h0 > 0 such that for all h ∈]0, h0],
u ∈ D ∩ (gh

j )⊥
1≤j≤n0

and z ∈ C uith Re z ≤ ch2

‖(Ph − z)u‖ ≥ ch2‖u‖ and ‖(P ∗
h − z)u‖ ≥ ch2‖u‖.

Proof. Recall that N+
h,ε = 1 + O(h). Hence, for u ∈ D ∩ (gh

j )⊥
1≤j≤n0

, we have
by putting u = Shw and using that Sh is unitary

‖(Ph − z)u‖‖u‖ ≥ 1
2
‖(Ph − z)u‖‖N+

h,εw‖

≥ 1
2
Re〈(Ph − z)u, ShN+

h,εw〉

=
1
2
Re〈N+

h,ε(hP − z)w,w〉

≥ h2

C
‖u‖2 − Re z‖N+

h,ε‖‖u‖2

≥ h2

2C
‖u‖2

if Re z ≤ h2/2C. The same proof holds when replacing P by P ∗ and N+
h,ε by

N−
h,ε.

2.2. Resolvent Estimates and First Localization of the Small Eigenvalues

Using Lemma 2.3, it is clear that for u ∈ Span
(
(gh

j )1≤j≤n0

)
and A ∈

{Ph, P ∗
h , P ∗

hPh, PhP ∗
h} we have

‖Au‖2 = O(e− 2α
h )‖u‖2.
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Now, if we denote P the orthogonal projection on Span
(
(gh

j )1≤j≤n0

)
, we get

by using Corollary 2.5 that for z ∈ C such that Re z ≤ ch2 and u ∈ D

‖(Ph − z)u‖2 = ‖(Ph − z)(Id − P)u + (Ph − z)Pu‖2

= ‖(Ph − z)(Id − P)u‖2 + ‖(Ph − z)Pu‖2

+ 2Re〈(Ph − z)(Id − P)u, (Ph − z)Pu〉
≥ c2h4‖(Id − P)u‖2 + |z|2‖Pu‖2 − O(e− α

h )‖u‖2

+ 2Re〈(Ph − z)(Id − P)u, (Ph − z)Pu〉.
The last term equals

2Re
[
〈(Id − P)u, P ∗

hPhPu〉 − z〈(Id − P)u, PhPu〉 − z̄〈(Id − P)u, P ∗
hPu〉
]

= (1 + |z|)O(e− α
h )‖u‖2.

Therefore choosing c̃ ≤ c, there exists h0 > 0 such that for h ≤ h0 and z such
that c̃h2 ≤ |z| ≤ ch2

‖(Ph − z)u‖2 ≥
(
|z|2 + O(e− α

h )
)
‖u‖2 ≥ c̃2h4

2
‖u‖2.

Once again, the same estimate holds with P ∗
h instead of Ph and since the

annulus we are working on is invariant by complex conjugation, we also have

‖(Ph − z)∗u‖ ≥ c̃h2

2
‖u‖.

Therefore, we get the following resolvent estimate on the annulus centered in
0 and of radiuses c̃h2 and ch2:

‖(Ph − z)−1‖ = O(h−2) for c̃h2 ≤ |z| ≤ ch2. (2.4)

We can now consider the spectral projection

Π0 =
1

2iπ

∫

|z|=ch2
(z − Ph)−1dz (2.5)

and its range that we denote H. This operator will yield some information on
Spec(Ph)∩B(0, ch2) and therefore enable us to prove the main statement from
Theorem 1.6.

The main point is that H is of dimension n0. It can be obtained by a
direct adaptation of the proof of Proposition 3.1 from [20]. Hence, Spec(Ph) ∩
B(0, ch2) which is the same as Spec(Ph|H) consists of n0 eigenvalues (counted
with algebraic multiplicity). Here again, our result slightly differs from the
one in [20] as we do not rule out the possibilities that Ph|H contains some
Jordan blocks and that some of its eigenvalues are not real. It only remains
to prove that these are exponentially small with respect to 1/h. We begin by
noticing that thanks to Lemma 2.3, we have (z − Ph)gh

j = zgh
j + O(e− α

h ) and
(z − P ∗

h )gh
j = zgh

j + O(e− α
h ) from which we easily deduce

Π0g
h
j = gh

j + O(e− α
h ) and Π∗

0g
h
j = gh

j + O(e− α
h ). (2.6)
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In particular, (Π0g
h
j )1≤j≤n0 is almost orthonormal so for u =

∑
ujΠ0g

h
j ∈ H,

we have

‖u‖2 =
(
1 + O(e−α/h)

) n0∑

j=1

|uj |2.

Therefore, it is enough to prove that Ph is exponentially small on (Π0g
h
j )1≤j≤n0 .

But thanks to the resolvent estimate (2.4), it is easy to see that Π0 = O(1)
and since Ph and Π0 commute, we get the desired result.

To complete the proof of Theorem 1.6, it only remains to show the exis-
tence of the resolvent on {Re z ≤ ch2}\B(0, c̃h2) as well as the estimate in
O(h−2).

Lemma 2.6. Denote Π̂0 = 1 − Π0. For all u ∈ L2(R2d), we have

Π̂0u = w + r

with w ∈ (gh
j )⊥

1≤j≤n0
and r ∈ Span

(
(gh

j )1≤j≤n0

)
satisfying r = O(e− α

h )‖Π̂0u‖.

Proof. First we take for r the orthogonal projection of Π̂0u on
Span
(
(gh

j )1≤j≤n0

)
. Then, we notice that using (2.6), we get

〈gh
j , Π̂0u〉 = 〈Π̂∗

0g
h
j , Π̂0u〉 = O(e− α

h )‖Π̂0u‖
which implies the announced estimate.

Lemma 2.7. For all r′ ∈ Span
(
(gj)1≤j≤n0

)
, we have N±

h,εr
′ ∈ Dom (P ∗) =

Dom (P ). Moreover, the restrictions to the finite dimensional subspace
Span
(
(gj)1≤j≤n0

)
of the operators PN±

h,ε and P ∗N±
h,ε are all O(1).

Proof. For the first statement, it is sufficient to show that for 1 ≤ j ≤ n0,
the functions Lgj and L∗gj are both in Dom (P ). But we have in the sense of
distributions

X0Lgj = [X0, L]gj + LX0gj (2.7)

and we saw in the proof of Proposition 2.4 that [X0, L] is a bounded operator
on L2(R2d) so it is then clear that X0Lgj ∈ L2(R2d), i.e., Lgj ∈ Dom (P ). The
same goes easily for L∗gj . For the second statement, using Lemma 2.3 and the
fact that Q̃1 = O(h−1), it suffices to notice that for 1 ≤ j ≤ n0, (2.7) implies
that X0Lgj and X0L

∗gj are both O(1) as we saw that L and [X0, L] are O(1).

Proposition 2.8. Consider P̂h the restriction of Ph to Π̂0D acting on Π̂0L
2(R2d).

Then for all z ∈ C such that Re z ≤ ch2, the resolvent (P̂h − z)−1 exists and
we have the uniform estimate

(P̂h − z)−1 = O(h−2).

Proof. We actually prove that the result of Proposition 2.4 remains true when
replacing the set (gj)⊥

1≤j≤n0
∩ Dom (P ) by S−1

h Π̂0D. We will deduce that the
result of Corollary 2.5 also remains true when taking u ∈ Π̂0D instead of
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(gh
j )⊥

1≤j≤n0
∩ D, which is precisely the statement that we want to prove. Let

u ∈ D, using the notations from Lemma 2.6 we have

Re 〈PS−1
h Π̂0u,N+

h,εS
−1
h Π̂0u〉

= Re 〈PS−1
h w,N+

h,εS
−1
h w〉 + Re 〈PS−1

h w,N+
h,εS

−1
h r〉

+ Re 〈PS−1
h r,N+

h,εS
−1
h w〉 + Re 〈PS−1

h r,N+
h,εS

−1
h r〉 .

Now, let us denote w′ = S−1
h w ∈ (gj)⊥

1≤j≤n0
∩ Dom (P ) and r′ = S−1

h r ∈
Span
(
(gj)1≤j≤n0

)
. We can use Proposition 2.4 as well as Lemmas 2.6 and 2.7

to get

Re 〈N+
h,εPS−1

h Π̂0u, S−1
h Π̂0u〉 = Re 〈Pw′, N+

h,εw
′〉

+ Re 〈w′, P ∗N+
h,εr

′〉 + Re 〈N+
h,εPr′, w′〉

+ Re 〈Pr′, N+
h,εr

′〉

≥ h

C
‖w‖2 − O

(‖w‖ ‖r‖)− O(e− α
h ‖r‖)

≥ h

2C
‖S−1

h Π̂0u‖2.

As usual, all of the above remains true with P ∗ and N−
h,ε instead of P and

N+
h,ε so the proof is now complete.

End of Proof of Theorem 1.6: Let z ∈ C satisfying Re z ≤ ch2 and |z| ≥ c̃h2

and recall the notation H = Ran Π0. We already know from Proposition 2.8
that P̂h − z is invertible, but it is clearly also the case of Ph|H − z since
Ph|H = O(e−α/h). Therefore, Ph − z is invertible and we have

(Ph − z)−1 = (P̂h − z)−1Π̂0 + (Ph|H − z)−1Π0. (2.8)

Besides, we easily have for such z that ‖(Ph|H − z)u‖ ≥ 1
C h2‖u‖ which com-

bined with (2.8), Proposition 2.8 and the fact that ‖Π0‖ = O(1) yields the
estimate (Ph − z)−1 = O(h−2). �

3. Accurate Quasimodes

3.1. General Form

Let us denote

W (x, v) =
V (x)

2
+

v2

4
the global potential on R

2d. Before we can construct our quasimodes, we need
to recall the general labeling of the minima which originates from [6] and was
generalized in [11], as well as the topological constructions that go with it. In
our case, it has to be done for the global potential, i.e., the function W . How-
ever, by the definition of W , a strong connection between these constructions
for W and the ones for V will appear, leading to simplifications. In order to
give a proper statement about this connection, let us construct the labelings
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for both W and V . To this aim, we consider d′ ∈ N
∗ and a smooth Morse

function Y on R
d′

bounded from below, having at least two local minima and
such that |∇Y | ≥ 1/C outside of a compact. According to Hypothesis 1.5, one
can, for instance, take Y = V/2 or Y = W and recall that as we discussed
following Hypothesis 1.5, it implies that Y (X) ≥ |X|/C outside of a compact.
We also denote

U (k),Y the critical points of Y of index k. (3.1)

For shortness, we will write “CC” instead of “connected component”.

Lemma 3.1. If X ∈ U (1),Y , then there exists r0 > 0 such that for all 0 < r < r0,
X has a connected neighborhood Ur in B(X, r) such that Ur ∩ {Y < Y (X)}
has exactly 2 CCs.

Proof. Let X ∈ U (1),Y ; according to the Morse lemma, there exists a connected
neighborhood Ur of X, r′ > 0 and ϕ : Ur → B(0, r′) a smooth diffeomorphism
such that

Y ◦ ϕ−1 = Y (X) +
1
2
〈HessXY ·, ·〉.

Besides, it is easy to see that

Ur ∩ {Y < Y (X)} = ϕ−1
({y ∈ B(0, r′) ; 〈HessXY y, y〉 < 0})

and {y ∈ B(0, r′) ; 〈HessXY y, y〉 < 0} has exactly 2 CCs.

Lemma 3.2. Let X ∈ R
d′

and suppose there exists r0 > 0 such that for every
neighborhood U of X in B(X, r0), the set U ∩ {Y < Y (X)} is not connected.
Then, X ∈ U (1),Y .

Proof. First we clearly have that ∇Y (X) = 0 since otherwise one could use
the implicit function theorem to find a neighborhood U of X in B(X, r0) such
that U ∩ {Y < Y (X)} is connected. It is also clear that X /∈ U (0),Y so let us
assume by contradiction that X ∈ U (k),Y with k ≥ 2. Then using the Morse
lemma as in the proof of Lemma 3.1, we would once again get that X has a
neighborhood U in B(X, r0) such that U ∩{Y < Y (X)} has the same number
of CCs as {y ∈ B(0, r) ; 〈HessXY y, y〉 < 0} which is connected since k ≥ 2.
Hence, X has to be in U (1),Y .

In view of the result from Lemma 3.1 and following the approach from [6,11],
we give the following definition:

Definition 3.3. 1. We say that X ∈ U (1),Y is a separating saddle point and
we denote X ∈ V(1),Y if for every r > 0 small enough, the two CCs of
Ur ∩ {Y < Y (X)} are contained in different CCs of {Y < Y (X)}.

2. We say that σ ∈ R is a separating saddle value if σ ∈ Y (V(1),Y ).
3. Finally, we say that a set E ⊂ R

d′
is critical if there exists σ ∈ Y (V(1),Y )

such that E is a CC of {Y < σ} satisfying ∂E ∩ V(1),Y �= ∅.
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Lemma 3.4. Let m, m′ be two distinct local minima of Y . The real number

σ = sup
{
a ∈ R ; m and m′ are in two different CCs of {Y < a}}

is well defined, and {Y < σ} has at least two CCs Ω � m and Ω′ � m′.
Moreover, σ is a separating saddle value and Ω, Ω′ are critical.

Proof. We can assume that Y (m) ≤ Y (m′) so taking a := infA Y where A is
a well-chosen annulus centered in m′, we see that

{
a ∈ R ; m and m′ are in two different CCs of {Y < a}} �= ∅ (3.2)

and it is then clear that σ is well defined. Besides, if (σn)n≥1 is an increasing
sequence in the set from (3.2) that converges toward σ and γ : [0, 1] → R

d′
is

a continuous path linking m and m′, then

γ([0, 1]) ∩ (Rd′\{Y < σ}) =
⋂

n≥1

γ([0, 1]) ∩ (Rd′\{Y < σn})

is non-empty by compactness so we can consider Ω � m and Ω′ � m′ two
different CCs of {Y < σ}. To prove that σ is a separating saddle value, we
will actually show that there exists a CC of {Y < σ} that we denote Ω′′ which
is not Ω and satisfies Ω ∩ Ω′′ �= ∅. Assume by contradiction that there exists
ε > 0 such that (Ω + B(0, ε))\Ω is included in {Y ≥ σ}. In that case, the
points of (Ω + B(0, ε))\Ω on which Y takes the value σ are local minima of Y
which is a Morse function, so there are finitely many such points. Thus, up to
taking ε smaller, we can assume that

Γ := dist(·,Ω)−1({ε}) ⊆ {Y > σ}.

Hence, there exists δ > 0 such that the minimum of Y on Γ is σ + δ. Since
any continuous path linking m and m′ has to cross Γ, m and m′ are in two
different CCs of {Y < σ + δ/2}. This contradicts the maximality of σ and
proves the existence of Ω′′. Hence, Lemma 3.2 implies that Ω ∩ Ω′′ ⊆ U (1),Y

and then Ω ∩ Ω′′ ⊆ V(1),Y follows obviously from the definition of V(1),Y .

Thanks to Lemma 3.4, we know that V(1),Y �= ∅. Let us then denote
σ2 > · · · > σN where N ≥ 2 is the different separating saddle values of Y
and for convenience we set σ1 = +∞. We call labeling of the minima of Y any
injection l : U (0),Y → �1, N� × N

∗. If l(m) = (k, j), we denote for shortness
m = mk,j . We are going to introduce the usual labeling of the minima for a
potential Y (see, for instance, [6,11,12]). We adopt a slightly unusual point
of view in order to facilitate the establishment of the correspondence between
the constructions for W and the ones for V/2 that we will state later on. For
σ ∈ R ∪ {+∞}, let us denote CY

σ the set of all the CCs of {Y < σ}. Given a
labeling l of the minima, we denote for k ∈ �1, N�

U (0),Y
k = l−1(�1, k� × N

∗) ∩ {Y < σk}
and we say that the labeling is adapted to the separating saddle values if for all
k ∈ �1, N�, each element of l−1({k} ×N

∗) is a global minimum of Y restricted
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to some CC of {Y < σk} and the map

TY
k : U (0),Y

k → CY
σk

(3.3)

sending m ∈ U (0),Y
k on the element of CY

σk
to which it belongs is bijective. In

particular, l−1({k} ×N
∗) is contained in U (0),Y

k . Such labelings exist, one can,
for instance, easily check that the usual labeling procedure presented in [11] is
adapted to the separating saddle values.

Lemma 3.5. Under an adapted labeling of the minima of Y , for any 2 ≤ k ≤ N ,
the elements of TY

k

(
l−1({k} × N

∗)
)

are critical.

Proof. Let mk,j ∈ l−1({k} × N
∗). There exists a CC of {Y < σk−1} that we

call E which is such that TY
k (mk,j) ⊆ E and E contains some mk′,j′ ∈ E for

1 ≤ k′ ≤ k − 1 and j′ ∈ N
∗ by bijectivity of TY

k−1. Therefore, mk′,j′ and mk,j

are in the same CC of {Y < σk−1} but are not both in TY
k (mk,j) this time

by bijectivity of TY
k . Applying Lemma 3.4 to mk′,j′ and mk,j , we obtain a

separating saddle value σ̃ which is the maximal real number such that mk′,j′

and mk,j are in two different CCs of {Y < σ̃}. Therefore, we get σ̃ = σk so
TY

k (mk,j) is one of the CCs of {Y < σ̃} called Ω and Ω′ in Lemma 3.4 and
which are critical.

Definition 3.6. Recall the notation (3.1) and Definition 3.3. Given an adapted
labeling (mk,j)k,j , we can now define the following mappings:

• EY : U (0),Y −−→ P(Rd′
)

mk,j �−−→ TY
k (mk,j)

where TY
k is the map defined in (3.3).

• jY : U (0),Y → P(V(1),Y ∪ {s1}
)

given by jY (m1,1) = s1 where s1 is a fictive saddle point such that
Y (s1) = σ1 = +∞, and for 2 ≤ k ≤ N , jY (mk,j) = ∂EY (mk,j) ∩ V(1),Y

which is not empty according to Lemma 3.5 and included in {Y = σk}.
• σY : U (0),Y → Y (V(1),Y ) ∪ {σ1}

m �→ Y (jY (m))
where we allow ourselves to identify the set Y (jY (m)) and its unique
element in Y (V(1),Y ) ∪ {σ1}.

• SY : U (0),Y −−→]0,+∞]
m �−−→ σY (m) − Y (m).

Let us now state a lemma that will enable us to show that, roughly
speaking, the previous constructions for Y = V/2 are the projections on R

d
x of

the ones for Y = W . First, we give the following easy observation.

Remark 3.7. By definition of W , we have V/2 = W (·, 0). Moreover, if
(x0, v0) ∈ {W < σ}, then {x0} × B(0, |v0|) ⊆ {W < σ}.

For shortness, we denote Cσ = CV/2
σ and C̃σ = CW

σ as well as U (k) = U (k),V/2

and Ũ (k) = U (k),W . (We do similarly with V or Uk instead of U .) Notice that
Ũ (k) = U (k) ×{0}. We introduce the natural projection πx : R2d → R

d
x sending

(x, v) on x that we also consider as a map from P(R2d) to P(Rd
x).
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Lemma 3.8. For all σ ∈ R, the projection πx sends C̃σ in Cσ. Moreover, the
map πx : C̃σ → Cσ is bijective.

Proof. The proof of the first statement is an easy consequence of Remark
3.7. For the second statement, let x ∈ E ∈ Cσ and denote Ẽ the element of
C̃σ containing (x, 0). By the first statement, we necessarily have πx(Ẽ) = E

so we have shown the surjectivity. Now, let Ẽ1, Ẽ2 ∈ C̃σ such that πx(Ẽ1) =
πx(Ẽ2) = E1. Let also (x1, v1) ∈ Ẽ1 and (x2, v2) ∈ Ẽ2. Since x1, x2 ∈ E1, there
exists a path (γ(t), 0) from (x1, 0) to (x2, 0) contained in {W < σ}. Thus, the
concatenation of the paths (x1, (1 − t)v1), (γ(t), 0) and (x2, tv2) yields a path
linking (x1, v1) and (x2, v2) in {W < σ}. Hence, Ẽ1 = Ẽ2 and we get the
injectivity.

Proposition 3.9. 1. We have Ṽ(1) = V(1) × {0}. In particular, V/2 and W
have the same separating saddle values.

2. A set Ẽ ∈ C̃σ is critical if and only if πx(Ẽ) is critical.
3. A labeling ((m, 0)k,j)k,j is adapted to W if and only if (mk,j)k,j is adapted

to V/2.
Moreover, given an adapted labeling, the mappings from Definition 3.6 satisfy

EV/2(mk,j) = πx

(
EW (mk,j , 0)

)
and jW (mk,j , 0) = jV/2(mk,j) × {0}.

Proof. Let Ẽ ∈ C̃σ. Thanks to Remark 3.7, we easily have

(x, 0) ∈ ∂Ẽ ⇐⇒ x ∈ ∂
(
πx(Ẽ)

)
. (3.4)

(a): We already know that Ũ (1) = U (1) × {0}. Besides, we easily deduce from
(3.4) and Lemma 3.8 that (s, 0) ∈ Ũ (1) is in the closure of two distinct CCs of
{W < W (s, 0)} if and only if s ∈ U (1) is in the closure of two distinct CCs of
{V < V (s)} so the first item is proven.

(b): This is also a straightforward consequence of (3.4) and Lemma 3.8
combined with item a).

(c): Let Ẽ ∈ C̃σk
. By Remark 3.7, we easily have

(m, 0) is a global minimum of W |Ẽ ⇐⇒ m is a global minimum of V |πx(Ẽ).

(3.5)

Besides, since Ũ (0)
k = U (0)

k × {0}, we have that πk defined as πx : Ũ (0)
k → U (0)

k

is bijective. We can then conclude as

TW
k = π−1

x ◦ T
V/2
k ◦ πk (3.6)

where πx denotes the bijective map from Lemma 3.8.
The last statement is a direct consequence of (3.6), (3.4) and item a).

From now on, we fix a labeling (mk,j)k,j adapted to V .

Definition 3.10. Recall the maps from Definition 3.6. In the rest of the paper,
we set

j = jV/2.
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Moreover, in view of Proposition 3.9, we can also set

σ(m) = σV/2(m) = σW (m, 0) and S(m) = SV/2(m) = SW (m, 0).

However, be careful that we choose to denote E = π−1
x ◦EV/2 so that the range

of E is in P(R2d). Following [2,6,11,12], we can now state our last assumption
that allows us to treat the generic case. As mentioned in the introduction, this
assumption could actually be omitted (see [17] or [1]) but this would introduce
additional difficulties that are not the main concern of this paper.

Hypothesis 3.11. For all m ∈ U (0), we have

(a) m is the only global minimum of V |EV/2(m)

(b) for any m′ ∈ U (0)\{m}, the sets j(m) and j(m′) do not intersect.

According to Proposition 3.9 and (3.5), this hypothesis is equivalent to the facts
that (m, 0) is the only global minimum of W |E(m) and jW (m, 0)∩jW (m′, 0) =
∅ which is what we use in practice.

Recall the notation (1.6) and let us extend our notions of asymptotic
expansions to smooth functions that are not necessarily symbols. Throughout
the paper, for d′ ∈ N

∗, Ω ⊆ R
d′

and a ∈ C∞(Ω) a function depending on
h and such that for all β ∈ N

d′
we have ∂βa = OL∞(1), we will denote

a ∼h

∑
j≥0 hjaj , where (aj)j≥0 ⊂ C∞(Ω) are allowed to depend on h, provided

that for all β ∈ N
d′

and N ∈ N, there exists Cβ,N such that
∥
∥
∥
∥
∥
∥
∂β

⎛

⎝a −
N−1∑

j=0

hjaj

⎞

⎠

∥
∥
∥
∥
∥
∥

∞,Ω

≤ Cβ,NhN .

It implies in particular that ∂βaj = OL∞(1). We will also say that a ∈ C∞(Ω)
admits a classical expansion on Ω and we will denote a ∼ ∑j≥0 hjaj if a ∼h∑

j≥0 hjaj and the (aj) are independent of h. From now on, the letter r will
denote a small universal positive constant whose value may decrease as we
progress in this paper. (One can think of r as 1/C.) For x ∈ R

d, we denote
B0(x, r) = B(x, r) × B(0, r) ⊆ R

2d. We essentially follow the quasimodal
construction from [1]. We will also denote

HW = h−1Xh
0 =
(

v
−∂xV

)
,

where we allowed ourselves to identify the differential operator Xh
0 and the

vector field representing it.

Let m ∈ U (0)\{m}; for each s ∈ j(m) we introduce a function �s,h that
will appear in our quasimodes. Note that thanks to item b) from Hypothesis
3.11, each �s,h corresponds to a unique m ∈ U (0)\{m}. Our goal will be to find
some functions �s,h such that our quasimodes are the most accurate possible.
In order to begin the computations that will yield the equations that the
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function �s,h should satisfy, we will for the moment assume that it satisfies the
following:

(3.7)

(a) �s,h is a smooth real-valued function on R
2d whose support is

contained in B0(s, 3r)
(b) �s,h admits a classical expansion �s,h(x, v) ∼ ∑hj�sj(x, v) on

B0(s, 2r)
(c) �s0 vanishes at (s, 0)
(d) (s, 0) is a local minimum of the function W + (�s0)

2/2 which is
non-degenerate

(e) the functions θm,h (which depends on �s,h) and χm that we will
introduce in (3.9)–(3.12) are such that θm,h is smooth on a neigh-
borhood of supp χm.

Once we will have found the desired function �s,h, we will see in Proposition 5.2
that these assumptions are actually satisfied. Denote ζ ∈ C∞

c (R, [0, 1]) an even
cutoff function supported in [−γ, γ] that is equal to 1 on [−γ/2, γ/2] where
γ > 0 is a parameter to be fixed later and

Ah =
1
2

∫

R

ζ(s)e− s2
2h ds =

∫ γ

0

ζ(s)e− s2
2h ds =

√
πh√
2

(1 + O(e−α/h))

for some α > 0. (3.8)

We now define for each m ∈ U (0)\{m} a function θm,h as follows: if (x, v) ∈
B0(s, r) ∩ {|�s,h| ≤ 2γ} for some s ∈ j(m),

θm,h(x, v) =
1
2

(
1 + A−1

h

∫ s,h(x,v)

0

ζ(s)e−s2/2hds
)

(3.9)

, whereas we set

θm,h = 1 on (E(m) + B(0, ε))
∖
⎛

⎝
⊔

s∈j(m)

(
B0(s, r) ∩ {|�s,h| ≤ 2γ})

⎞

⎠

(3.10)

with ε(r) > 0 to be fixed later and

θm,h = 0 everywhere else. (3.11)

Note that θm,h takes values in [0, 1]. Denote Ω the CC of {W ≤ σ(m)} con-
taining m. The CCs of {W ≤ σ(m)} are separated so for ε > 0 small enough,
there exists ε̃ > 0 such that

min
{
W (x, v) ; d

(
(x, v),Ω

)
= ε
}

= σ(m) + 2ε̃.

Thus, the distance between {W ≤ σ(m)+ε̃}∩(Ω+B(0, ε)
)

and ∂
(
Ω+B(0, ε)

)

is positive and we can consider a cutoff function

χm ∈ C∞
c (R2d, [0, 1]) (3.12)

such that

χm = 1 on {W ≤ σ(m) + ε̃} ∩ (Ω + B(0, ε)
)
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and

suppχm ⊂ (Ω + B(0, ε)
)
.

To sum up, we have the following picture:

•j(m)•m

θm,h = 1

θm,h = 0

Ω

supp χm

θm,h given by (3.1)

We also denote

Wm(x, v) = W (x, v) − V (m)/2,

and it is clear that on the support of ∇χm, we have

Wm ≥ S(m) + ε̃.

Our quasimodes will be the L2-renormalizations of the functions

fm,h(x, v) = χm(x, v)θm,h(x, v)e−Wm(x,v)/h ; m ∈ U (0)\{m} (3.13)

and for m = m,

fm,h(x, v) = e−Wm(x,v)/h ∈ Ker Ph.

Note that these functions belong to C∞
c (R2d) thanks to our assumption on the

(�s,h)s∈j(m) and that for m �= m, we have

supp fm,h ⊆ E(m) + B(0, ε′) (3.14)

where ε′ = max(ε, r).

3.2. Action of the Operator Ph

Let us fix m ∈ U (0)\{m}.
We will denote

W̃m,h = Wm +
∑

s∈j(m)

(�s,h)2/2 (3.15)

and

ψm,h(x, v, v′) =
∫ 1

0

∂vW̃m,h(x, v′ + t(v − v′))dt. (3.16)

Remark 3.12. Using Hypothesis 1.3, it is easy to see that b∗
hOph(Mh) =

Oph(gh), with

gh = (−i tη + tv/2)Mh − h

2
(t∇v − i

2
t∇η)Mh ∈ M1,d

(
S0

τ (〈(v, η)〉−1)
)
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where

t∇vMh =

(
d∑

k=1

∂vk
mk,j

)

1≤j≤d

and t∇η is defined similarly.

Proposition 3.13. Let fm,h be the quasimode defined in (3.13). With the nota-
tions introduced in (3.8) and (3.15), one has

Phfm,h =
h

2
A−1

h ωm,h e
−W̃m,h

h 1jW (m)+B0(0,2r) + OL2

(
h∞e− S(m)

h

)

where ωm,h is a function bounded uniformly in h and defined on jW (m) +
B0(0, 2r) by

ωm,h =
∑

s∈j(m)

(
HW · ∇�s,h + Is,h

)

with Is,h(x, v) given for (x, v) ∈ jW (m) + B0(0, 2r) by the oscillatory integral

(2πh)−d

∫

Rd

∫

|v′|≤2r

e
i
h

η·(v−v′)gh
(
x,

v + v′

2
, η + iψm,h(x, v, v′)

)
∂v�s,h(x, v′) dv′dη.

Proof. In order to lighten the notations, we will drop some of the exponents
and indexes m, s and h in the proof. By (3.7), we have on the support of χ
that θ is smooth and

∇θ =
A−1

h

2

∑

s∈j(m)

e−(s)2/2hζ(�s)∇�s 1B0(s,r).

Here, we have to put the indicator function because ζ(�)∇� might have some
support in B0(s, 3r)\B0(s, r). We can then begin by computing

Xh
0 f = hHW · ∇f

= hHW · ∇θ χe−Wm/h + hHW · ∇χ θe−Wm/h

=
h

2
A−1

h χe−W̃/h
∑

s∈j(m)

ζ(�s)HW · ∇�s 1B0(s,r) + O
(
he− S(m)+ε̃

h

)
.

(3.17)

since Wm ≥ S(m)+ ε̃ on the support of ∇χ. Now, we can use Remark 3.12 to
write

Qh(f) = hOph(g)
(
(∂vθ)χe−Wm/h + (∂vχ)θe−Wm/h

)

=
h

2
A−1

h

∑

s∈j(m)

Oph(g)
(
ζ(�s)χe−W̃/h∂v�s 1B0(s,r)

)
+ O
(
he− S(m)+ε̃

h

)

(3.18)
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since g ∈ S(〈(v, η)〉−1) and thus Oph(g) is bounded uniformly in h. But since
g does not depend on ξ, we have for s ∈ j(m)

(2πh)dOph(g)
(
ζ(�)χe−W̃/h∂v�1B0(s,r)

)
(x, v)

=
∫

Rd

∫

|v′|≤r

e
i
h η·(v−v′)g

(
x,

v + v′

2
, η
)

× χ(x, v′)ζ
(
�(x, v′)

)
e−W̃ (x,v′)/h∂v�(x, v′) dv′dη 1B(s,r)(x). (3.19)

Let us now treat separately the cases |v| ≥ 2r and |v| < 2r.
When |v| ≥ 2r, we have |v − v′| ≥ r so we can apply the non-stationary

phase to the integral in η to get that for all x ∈ B(s, r) and N ≥ 1, there exists
CN > 0 such that
∣
∣
∣
∣

∫

Rd

∫

|v′|≤r

e
i
h

η·(v−v′)g
(
x,

v + v′

2
, η
)
χ(x, v′)ζ

(
�(x, v′)

)
e−W̃ (x,v′)/h∂v�(x, v′) dv′dη

∣
∣
∣
∣

≤ CNhN |v|−Ne− S(m)
h

where we used item d) from (3.7), the fact that Wm(s, 0) + �20(s, 0)/2 = S(m)
and the estimate |v − v′| ≥ |v|/2. Hence, we have shown that

Qhf 1{|v|≥2r} = O
(
h∞e− S(m)

h

)
and Phf 1{|v|≥2r} = O

(
h∞e− S(m)

h

)
.

(3.20)

Now for the case |v| < 2r, let us denote Js
1(x, v) the RHS of (3.19). Proceeding

as in [18] in order to take the e−W̃ (x,v′)/h in front of the oscillatory integral,
we get that for any x ∈ B(s, r),

Js
1(x, v) = e−W̃ (x,v)/hJs

2(x, v) (3.21)

where

Js
2(x, v) =

∫

Rd

∫

|v′|≤r

e
i
h

(
η−iψ(x,v,v′)

)
·
(
v−v′
)
g
(
x,

v + v′

2
, η
)
χ(x, v′)ζ

(
�(x, v′)

)

∂v�(x, v′) dv′dη 1B(s,r)(x)

and ψ is the function defined in (3.16). For K ⊂ {1, . . . , d} and z ∈ C
d, denote

zK = (zj)j∈K . We also denote for d′ ∈ N and 1 ≤ j ≤ d′

ej = (δk,j)1≤k≤d′ ∈ N
d′

(3.22)

the elements of the canonical basis of C
d′

. Now, notice that ψ is a smooth
function and that using the expansion of � and (3.15), we get on B0(s, 2r) ×
{|v′| ≤ 2r},

ψ(x, v, v′) =
v + v′

4
+
∫ 1

0

(
�0∂v�0

)
(x, v′ + t(v − v′))dt + O(h).

In particular, we can choose r small enough so that |ψ| < τ on B0(s, 2r) ×
{|v′| ≤ 2r}. Besides, since g ∈ S0

τ (〈(v, η)〉−1), we have for all K ⊂ {1, . . . , d}
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and k ∈ {1, . . . , d}\K that the symbol

ηk �→ g

⎛

⎝x,
v + v′

2
, η + i

∑

j∈K

[ψ(x, v, v′)]jej

⎞

⎠

has an analytic continuation to {|ηk| < τ} for any x ∈ B(s, r), v, v′ ∈ B(0, 2r)
and η ∈ R

d. Hence, one can use the Cauchy formula which combined with the
decay of g yields
∫

R

e
i
h (ηk−i[ψ(x,v,v′)]k)(vk−v′

k)g

⎛

⎝x,
v + v′

2
, η + i

∑

j∈K

[ψ(x, v, v′)]jej

⎞

⎠ dηk

=
∫

R

e
i
h ηk(vk−v′

k)g

⎛

⎝x,
v + v′

2
, η + i

∑

j∈K∪{k}
[ψ(x, v, v′)]jej

⎞

⎠ dηk.

Applying this successively for each component of η on the integrals in Js
2 finally

gives Js
2 = Js

3 where

Js
3(x, v) =

∫

Rd

∫

|v′|≤r

e
i
h η·(v−v′)g

(
x,

v + v′

2
, η + iψ(x, v, v′)

)
χ(x, v′)ζ

(
�(x, v′)

)

∂v�(x, v′) dv′dη 1B(s,r)(x).

Combined with (3.19) and (3.21), this yields for |v| < 2r

(2πh)dOph(g)
(
ζ(�)χe−W̃/h∂v�1B0(s,r)

)
(x, v) = e−W̃ (x,v)/hJs

3(x, v). (3.23)

Therefore, setting on jW (m) + B0(0, 2r)

ω̃ =
∑

s∈j(m)

(
χζ(�s)HW · ∇�s 1B0(s,r) + (2πh)−dJs

3(x, v)
)
,

we have according to (3.17), (3.18), (3.20) and (3.23)

Phf =
h

2
A−1

h ω̃ e−W̃/h1jW (m)+B0(0,2r) + O
(
h∞e− S(m)

h

)
.

Hence, it is sufficient to check that on jW (m) + B0(0, 2r)

(ω̃ − ω)e−W̃/h = O
(
h∞e− S(m)

h

)
.

This can be done easily using again the non-stationary phase on an h-
independent neighborhood of (s, 0) on which χζ(�) − 1 vanishes since item
d) from (3.7) implies that e−W̃/h = O(e−(S(m)+δ)/h) outside of this neighbor-
hood for some δ > 0.

Remark 3.14. Since P ∗
h = −Xh

0 + Qh, it is clear from the previous proof that

P ∗
hfm,h =

h

2
A−1

h

∗
ωm,h e

−W̃m,h
h 1jW (m)+B0(0,2r) + OL2

(
h∞e− S(m)

h

)

with
∗
ωm,h =

∑

s∈j(m)

(
− HW · ∇�s,h + Is,h

)
.
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4. Equations on �s,h

From now on, we also fix s ∈ j(m).

Lemma 4.1. The function ωm,h admits the classical expansion ωm,h ∼∑
j≥0 hjωm

j on B0(s, 2r) where

ωm
0 = HW · ∇�s0 + M0

(
x, v, i

(v
2

+ �s0 ∂v�s0
))(

v + �s0∂v�
s
0

) · ∂v�
s
0

and for j ≥ 1,

ωm
j = HW · ∇�sj + M0

(
x, v, i

(v
2

+ �s0 ∂v�s0
))

(v + 2�s0∂v�s0) · ∂v�
s
j

+ i �s0
(
tv + �s0

t(∂v�s0)
)
DηM0

(
x, v, i(v/2 + �s0∂v�

s
0)
)(

∂v�
s
j

)
∂v�

s
0

+ M0

(
x, v, i

(v
2

+ �s0 ∂v�s0
))

∂v�s0 · ∂v�s0 �sj

+ i
(
tv + �s0

t(∂v�s0)
)
DηM0

(
x, v, i(v/2 + �s0∂v�

s
0)
)(

∂v�s0
)
∂v�s0 �sj

+ Rj(�s0, . . . , �
s
j−1) (3.1)

where Rj :
(C∞(B0(s, 2r))

)j → C∞(B0(s, 2r)) and Dη denotes the partial
differential with respect to the variable η.

Proof. Once again, we drop some of the exponents and indexes m, s and h
in the proof. Denote B∞(0, 2r) = {v′, η ∈ R

2d; max(|v′|, |η|) < 2r}. The first
terms of ω0 and ωj are both easily obtained thanks to the expansion of �
on B0(s, 2r). Hence, it remains to get an expansion of g(x, v/2 + v′/2, η +
iψ(x, v, v′)) that we will then be able to combine with the stationary phase to
get an expansion of the whole term Is,h of ω. Let us start with an expansion
of ψ: The expansion of � yields

∂vW̃ − v/2 ∼
∑

j≥0

hj

j∑

k=0

�k∂v�j−k on B0(s, 2r)

so using (3.16), we get

ψ ∼
∑

j≥0

hjψj on B0(s, 2r) × {|v′| ≤ 2r}

where

ψ0(x, v, v′) =
v + v′

4
+
∫ 1

0

(
�0∂v�0

)
(x, v′ + t(v − v′))dt (3.2)

and for j ≥ 1,

ψj(x, v, v′) =
∫ 1

0

j∑

k=0

(
�k∂v�j−k

)
(x, v′ + t(v − v′))dt. (3.3)

Besides, since Mh ∼ ∑n≥0 hnMn in Md

(
S0

τ (〈(v, η)〉−2)
)
, we deduce thanks

to Proposition C.2 and Remark 3.12 that g also has a classical expansion
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g ∼∑n≥0 hngn in M1,d

(
S0

τ (〈(v, η)〉−1)
)
, where the (gn) are given by

g0(x, v, η) =
(

− i tη +
tv

2

)
M0(x, v, η) (3.4)

and

gn(x, v, η) =
(

−i tη +
tv

2

)
Mn(x, v, η) − 1

2
(t∇v − i

2
t∇η)Mn−1(x, v, η) (3.5)

for n ≥ 1. According to Corollary C.6, we have

gn

(
x,

v + v′

2
, η + iψ(x, v, v′)

)
∼
∑

j≥0

hjgn,j(x, v, v′, η) on B0(s, 2r) × B∞(0, 2r)

with

gn,0(x, v, v′, η) = gn

(
x,

v + v′

2
, η + iψ0(x, v, v′)

)
(3.6)

and for j ≥ 1

gn,j(x, v, v′, η) = iDηgn

(
x,

v + v′

2
, η + iψ0(x, v, v′)

)(
ψj(x, v, v′)

)
+ R1

j (�0, . . . , �j−1)

(3.7)

where R1
j :
(C∞(B0(s, 2r))

)j → C∞(B0(s, 2r)). Using the expansion of g itself
and Proposition C.1, we get

g
(
x,

v + v′

2
, η + iψ(x, v, v′)

)
∼h

∑

n≥0

hngn

(
x,

v + v′

2
, η + iψ(x, v, v′)

)

on B0(s, 2r) × B∞(0, 2r) so we can use Proposition C.3 which yields

g
(
x,

v + v′

2
, η + iψ(x, v, v′)

)
∼
∑

j≥0

hj

j∑

n=0

gn,j−n(x, v, v′, η) (3.8)

on B0(s, 2r) × B∞(0, 2r). Thus, using the expansion (3.8) that we just got,
the one of ∂v�, and the one for an oscillatory integral given by the stationary
phase (see, for instance, [21], Theorem 3.17) as well Proposition C.3, we finally
get

Is,h ∼
∑

j≥0

hjIj on B0(s, 2r), (3.9)

where

Ij(x, v) =
∑

n1+n2+n3+n4=j

1
in1n1!

(
∂v′ · ∂η

)n1
(
gn2,n3(x, v, v′, η)∂v�n4(x, v′)

)
∣
∣
∣
∣
∣ v′=v

η=0

.

We can already use (3.6) to deduce the expression of ω0 by noticing that
according to (3.2), ψ0(x, v, v) = v/2 + �0∂v�0. For j ≥ 1, the terms of Ij in
which the function �j appears are obviously the one given by n4 = j, but also
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the one given by n3 = j according to (3.7). Indeed, in that case, we have using
(3.3) that

g0,j(x, v, v, 0) = i�0Dηg0

(
x, v, i(v/2 + �0∂v�0)

)(
∂v�j

)

+ iDηg0

(
x, v, i(v/2 + �0∂v�0)

)(
∂v�0
)
�j + R2

j (�0, . . . , �j−1)

where R2
j :
(C∞(B0(s, 2r))

)j → C∞(B0(s, 2r)). We can now conclude as for
any X ∈ R

d,

Dηg0

(
x, v, i(v/2 + �0∂v�0)

)
(X) = −i tXM0

(
x, v, i(v/2 + �0∂v�0)

)

+
(
tv + �0

t(∂v�0)
)
DηM0

(
x, v, i(v/2 + �0∂v�0)

)
(X)

according to (3.4).

Denote (mn
p,q)p,q the entries of the matrix Mn from Hypothesis 1.3. Since we

have for X ∈ R
d

DηM0

(
x, v, i(v/2 + �0∂v�0)

)(
X
)

=
(
∂ηm0

p,q

(
x, v, i(v/2 + �0∂v�0)

) · X
)

1≤p,q≤d
,

we get by putting

U(x, v) = M0

(
x, v, i

(v

2
+ �0 ∂v�0

))
∂v�0

+
∑

1≤p,q≤d

(
vp + �0∂vp

�0
)
i∂ηm0

p,q

(
x, v, i

(v

2
+ �0 ∂v�0

))
∂vq

�0

(3.10)

that equation (3.1) reads

ωj =

[

HW +

(
0

M0

(
x, v, i

(
v
2 + �0 ∂v�0

))
(v + �0∂v�0) + �0 U

)]

· ∇�j + U · ∂v�0 �j + Rj(�0, . . . , �j−1).

Lemma 4.2. Let (x, v) ∈ B0(s, 2r) and |v′| < 2r. For any n ∈ N, β ∈ N
d and

1 ≤ p, q ≤ d, we have

∂β
η mn

p,q

(
x,

v + v′

2
, iψm

0 (x, v, v′)
)

∈ i|β|
R

and

∂β
η gn

(
x,

v + v′

2
, iψm

0 (x, v, v′)
)

∈ i|β|
R

d.

In particular, U defined in (3.10) sends B0(s, 2r) in R
d.

Proof. Since �0 vanishes at (s, 0), we can suppose that r is such that
iψ0(x, v, v′) is in

D(0, τ)d = {z ∈ C ; |z| < τ}d (3.11)
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so by analyticity and using the parity of mn
p,q, we have

∂β
η mn

p,q

(
x,

v + v′

2
, iψ0(x, v, v′)

)

=
∑

γ∈Nd;

|γ|+|β|∈2N

i|γ| ∂
γ+β
η mn

p,q

(
x, v+v′

2 , 0
)

γ!
ψ0(x, v, v′)γ ∈ i|β|

R.

The result for gn follows easily using (3.4) and (3.5).

We also have the following result whose proof is postponed to Appendix 6 as
it involves tedious calculations.

Lemma 4.3. The term Rj(�s0, . . . , �
s
j−1) from Lemma 4.1 is real valued. More-

over, it satisfies Rj(�s0, . . . , �
s
j−1) = −Rj(−�s0, . . . ,−�sj−1).

In view of the results from Proposition 3.13 and Lemma 4.1, we want to find
� such that on B0(s, 2r),

HW · ∇�0 + M0

(
x, v, i

(v

2
+ �0 ∂v�0

))
(v + �0∂v�0) · ∂v�0 = 0 (3.12)

and for j ≥ 1
[

HW +

(
0

M0

(
x, v, i

(
v
2 + �0 ∂v�0

))
(v + �0∂v�0) + �0 U

)]

· ∇�j (3.13)

+ ∂v�0 · U �j + Rj(�0, . . . , �j−1) = 0

where U was introduced in (3.10). Note that Lemmas 4.2 and 4.3 ensure that
the fact that the (�j)j≥0 are real valued is compatible with equations (3.13).

4.1. Solving for �s0
Denote

p(x, v, ξ, η) = iξ · v − iη · ∂xV + (−i tη + tv/2)M0(x, v, η)(iη + v/2)

the principal symbol of the whole operator Ph and p̃(x, v, ξ, η) = −p(x, v, iξ, iη)
its complexification. After computing the Hamiltonian of p̃ which vanishes at
(s, 0, 0, 0), we find that its linearization at this point is the matrix

F =

⎛

⎜
⎜
⎝

0 Id 0 0
−HesssV 0 0 2M0(s, 0, 0)

0 0 0 HesssV
0 1

2M0(s, 0, 0) −Id 0

⎞

⎟
⎟
⎠ .

One can easily check that for any eigenvector (x, v, ξ, η) of F associated with
an eigenvalue λ, the vector (−x, v, ξ,−η) is an eigenvector associated with
−λ so the spectrum of F is centrally symmetric with respect to the origin.
Moreover, writing

F =

⎛

⎜
⎜
⎝

0 0 Id 0
0 0 0 Id
Id 0 0 0
0 Id 0 0

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

0 0 0 HesssV
0 1

2M0(s, 0, 0) −Id 0
0 Id 0 0

−HesssV 0 0 2M0(s, 0, 0)

⎞

⎟
⎟
⎠
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and noticing that

F
(
{v = η = 0}

)
∩ {v = η = 0} = Ker F ∩ {v = η = 0} = {0},

we see that F satisfies the assumptions of Lemma B.1. Therefore, F has no
eigenvalues in iR so it has 2d eigenvalues (counted with algebraic multiplicity)
in {Re z > 0}, while the 2d others are in {Re z < 0}. Therefore, we can apply
the stable manifold theorem to get that the stable manifolds associated with
Hp̃ given in a neighborhood of (s, 0, 0, 0) by

Λ± =
{

(x, v, ξ, η) ; lim
t→∓∞ etHp̃(x, v, ξ, η) = (s, 0, 0, 0)

}

are both of dimension 2d and for all ρ± ∈ Λ±, we have

Hp̃(ρ±) ∈ Tρ±Λ± (3.14)

and for t > 0,
∥
∥e∓tHp̃ρ± − (s, 0, 0, 0)

∥
∥ ≤ Ce−t/C‖ρ± − (s, 0, 0, 0)‖.

Moreover, we have (see, for instance, [4] Lemmas 3.2 and 3.3) that

p̃(Λ±) = {0} (3.15)

and Λ± are Lagrangian manifolds. In order to get some parameterization for
those manifolds, we follow the steps of [10], Lemma 8.1.

Lemma 4.4. The tangent spaces T(s,0,0,0)Λ± that we denote for shortness TsΛ±
are transverse to both {(s, 0)} × R

2d and R
2d × {(0, 0)}.

Proof. We provide an adaptation of the proof from [10] as some simplifications
appear in our case. Since we are working in the linearized case, we can assume
that p̃ coincides with its quadratic approximation at (s, 0, 0, 0) and for com-
modity we will work with the variable xs = x − s instead of x. Note that if a
is a quadratic form, its Hamiltonian Ha is then linear and we denote Fa the
associated matrix. We then decompose p̃ = p2 + p1 − p0 where

p2 = M0(s, 0, 0)η · η, p1 = v · ξ − HesssV xs · η and p0 =
1
4
M0(s, 0, 0)v · v.

It is clear that p2+p0 is positive semidefinite; moreover, the subspace {v = η =
0} on which p2 + p0 vanishes satisfies {v = η = 0} ∩ F−1

p1

({v = η = 0}) = {0}.
Thus, the quadratic form

q̃ = (p2 + p0) + (p2 + p0) ◦ Fp1

is positive definite. Let us denote L± = Λ± ∩ {xs = v = 0}. To prove that
L± = {0}, it is sufficient to establish that q̃ = 0 on L±. In order to do so, we
will show that L± is an Fp1 -invariant subspace on which p2 + p0 = 0. Indeed,
it is clear that p0 = p1 = 0 on L± and thanks to (3.15) we deduce that p2 also
vanishes on L± so in particular p2 + p0 = 0 on L±. It also implies that L± is
included in {η = 0} so Fp2 |L± = 0. Besides, we clearly have Fp0 |L± = 0 so Fp1

coincides on L± with Fp̃ which leaves Λ± invariant according to (3.14). Since
it is easy to see that {xs = v = 0} is also invariant under Fp1 , we can conclude
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as announced that L± = {0}. The proof that Λ± ∩ {ξ = η = 0} = {0} is
similar.

Since Λ± are Lagrangian manifolds such that TsΛ± are transverse to {(s, 0)}×
R

2d, there exist φ± ∈ C∞(B0(s, 2r),R) vanishing together with their gradients
at (s, 0) and such that

Λ± =
{(

(x, v,∇φ±(x, v)
)

; (x, v) ∈ B0(s, 2r)
}

.

Therefore, TsΛ± coincide with the graphs of the matrices Hess(s,0)φ± which
are then invertible according to Lemma 4.4. Now we need a result similar to
the one of Proposition 8.2 in [10].

Lemma 4.5. The Hessian matrix of ±φ± at (s, 0) is definite positive.

Proof. The proof is simply an adaptation of the one found in [10]. Here again,
we will assume that p̃ coincides with its quadratic approximation at (s, 0, 0, 0)
and work with the variable xs = x− s instead of x. For δ ∈ [0, 1], let us denote

p̃δ = (1 − δ)p̃ + δ
(
ξ2 + η2 − (x2

s + v2)
)

= pδ
2 + (1 − δ)p1 − pδ

0

where

pδ
2 = (1 − δ)p2 + δ(ξ2 + η2) and pδ

0 = (1 − δ)p0 + δ(x2
s + v2).

Note in particular that p̃0 = p̃ and that p̃1 =
(
ξ2 +η2 − (x2

s +v2)
)

corresponds
to the well know Schrödinger case (see, for instance, [4], chapter 3). Besides,
we have that

Fp̃δ =

⎛

⎜
⎜
⎜
⎝

0 0 Id 0

0 0 0 Id

Id 0 0 0

0 Id 0 0

⎞

⎟
⎟
⎟
⎠

⎡

⎢
⎢
⎢
⎣
(1 − δ)

⎛

⎜
⎜
⎜
⎝

0 0 0 HesssV

0 1
2M0(s, 0, 0) −Id 0

0 Id 0 0

−HesssV 0 0 2M0(s, 0, 0)

⎞

⎟
⎟
⎟
⎠

+ 2δ Id

⎤

⎥
⎥
⎥
⎦

so Lemma B.1 easily yields that the eigenvalues of Fp̃δ cannot cross iR for some
δ ∈ (0, 1]. Moreover, it is clear that for δ ∈ (0, 1], the quadratic form pδ

2 + pδ
0 is

positive definite, so the results of Lemma 4.4 are true for the 2d-dimensional
Lagrangian planes

Λδ
± =
{

(xs, v, ξ, η) ; lim
t→∓∞ etF

p̃δ (x, v, ξ, η) = 0
}

for all δ ∈ [0, 1]. In particular, there exist φδ
± ∈ C∞(B0(s, 2r),R) such that

TsΛδ
± = Λδ

± =
{(

xs, v,Hess(s,0)φδ
±

(
xs

v

))
; (xs, v) ∈ R

2d

}
.

Hence, the graph of Hess(s,0)φδ
± is given by TsΛδ

± which also corresponds to
the sum of the generalized eigenspaces of Fp̃δ associated with eigenvalues in
{±Re z < 0} and therefore depends continuously on δ. Besides, by Lemma 4.4,
Hess(s,0)φδ

± is invertible for all δ ∈ [0, 1] and we know from the Schrödinger
case that ±Hess(s,0)φ1

± > 0 so necessarily ±Hess(s,0)φ± > 0.

At this point, one can proceed as in [1], Lemma 3.2 to establish the following
lemma.
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Lemma 4.6. There exists �s0 ∈ C∞(B0(s, 2r),R) such that for (x, v) ∈
B0(s, 2r),

φ+(x, v) = W (x, v) − W (s, 0) +
�s0(x, v)2

2
.

In particular, �s0 vanishes at (s, 0). Moreover, {�s0 �= 0} is dense in B0(s, 2r).

This function also appears to solve (3.12) as we see in the next proposition.

Proposition 4.7. The function �s0 from Lemma 4.6 is a solution of (3.12) in

B0(s, 2r). Moreover, the vector ∇�s0(s, 0) that we denote νs =
(

νs
1

νs
2

)
is not 0

and satisfies Φsνs =
(− M0(s, 0, 0)νs

2 · νs
2

)
νs, where

Φs =
(

0 −HesssV
Id M0(s, 0, 0)

)
.

In particular, since Φs is invertible, νs
2 �= 0. Finally,

det
(

Hess(s,0)

(
W +

(�s0)
2

2

))
= 2−2d

∣
∣det(HesssV )

∣
∣.

Proof. The proof is the same as in [1], Lemma 3.3 after matching the notations
by setting Λ(s) = Φs, b0 = HW ,

A0(s) =
(

0 0
0 M0(s, 0, 0)

)
and B(s) =

(
0 Id

−HesssV 0

)
.

In particular, it is by a Taylor expansion at (s, 0) in (3.12) that we get
(

x − s
v

)
·
[(

0 −HesssV
Id 0

)
νs +
(

0
M0(s, 0, 0)νs

2

)
+ M0(s, 0, 0)νs

2 · νs
2 νs

]
= 0

from which we deduce that νs is an eigenvector of Φs associated with the
eigenvalue −M0(s, 0, 0)νs

2 · νs
2.

4.2. Solving for
(
�sj
)
j≥1

Once again we drop some exponents s for shortness. Now that �0 is given by
Lemma 4.6 and Proposition 4.7, we can solve the transport equations (3.13)
by induction, so we suppose that �0, . . . , �j−1 are given and we want to find a
solution �j to (3.13). Denote

Ũ = HW +

(
0

M0

(
x, v, i

(
v
2 + �0 ∂v�0

))
(v + �0∂v�0) + �0 U

)

∈ C∞(B0(s, 2r))

and

α = ∂v�0 · U ∈ C∞(B0(s, 2r))

where U was introduced in (3.10). The function �j must satisfy (Ũ ·∇+α)�j =
−Rj(�0, . . . , �j−1) so we are interested in the operator L = Ũ · ∇ + α that we
decompose as L = Ls

0 + L> with

Ls
0 = Ũ s

0

(
x − s

v

)
· ∇ + αs

0
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where Ũ s
0 is the differential of Ũ at (s, 0) and αs

0 = α(s, 0), that is

Ũ s
0 =
(

0 Id
−HesssV + 2M0(s, 0, 0)νs

2
tνs

1 M0(s, 0, 0)(Id + 2νs
2

tνs
2)

)

and

αs
0 = M0(s, 0, 0)νs

2 · νs
2. (3.16)

As usual, we will often omit the exponents s in the notations. Notice that
if we denote Pn

hom the space of homogeneous polynomials of degree n in the
variables (x − s, v), we have L0 ∈ L (Pn

hom) and for P ∈ Pn
hom, L>P (x, v) =

O
(
(x − s, v)n+1

)
near (s, 0).

Lemma 4.8. The negative eigenvalue −αs
0 of the matrix Φs from Proposition

4.7 is its only one (counting multiplicity) in {Re z ≤ 0}. Moreover, all the
eigenvalues of Ũ s

0 have positive real part and the operator Ls
0 is invertible on

Pn
hom.

Proof. It is sufficient to prove the first statement. Indeed, if −α0 is the only
eigenvalue of Φ in {Re z ≤ 0}, we can then remark that

tŨ0 = Φ + 2
(

0 ν1
tν2M0(s, 0, 0)

0 ν2
tν2M0(s, 0, 0)

)

and since the last term has its range included in Cν and sends ν on 2α0ν, the
matrix of tŨ0 in a basis (ν, b2, . . . , b2d) in which Φ becomes triangular is also
triangular and has on its diagonal the eigenvalues of Φ except for −α0 which
is replaced by +α0. Hence, Spec(Ũ0) = Spec(tŨ0) ⊂ {Re z > 0} and we can
conclude thanks to Lemma A.1 from [1]. Let us then prove that −α0 is the
only eigenvalue (counting multiplicity) of Φ in {Re z ≤ 0}. We proceed as in
[1], Lemma 2.6. For t ∈ [0, 1], consider the matrix

Φt = 2HesssW
(

(1 − t)Id −tId
tId tM0(s, 0, 0) + (1 − t)Id

)

which trivially satisfies the assumptions of Lemma B.1 for t ∈ [0, 1). It is
also the case of Φ1 as Φ1(x, 0) = (0, x). Hence for every t ∈ [0, 1], Φt has no
eigenvalues in iR and since these eigenvalues depend continuously on t, we get
that

#
(
Spec Φ1 ∩ {Re z < 0}) = #

(
Spec Φ0 ∩ {Re z < 0}).

But Φ0 = 2HesssW has exactly one negative eigenvalue (with multiplicity),
while all the others are positive since s ∈ U (1), so we have indeed showed that
−α0 is the only eigenvalue of Φ = Φ1 (counting multiplicity) in {Re z ≤ 0}.

One can then proceed as in [1], Section 3.3 (see also [4], chapter 3), i.e., use
Lemma 4.8 to find an approximate solution of (3.13) using formal power series
and then refine it into an actual solution using again Lemma 4.8 as well as the
characteristic method. We then get the following result.

Proposition 4.9. For all j ≥ 1, there exists �sj ∈ C∞(B0(s, 2r)) solving (3.13).
Moreover, �sj is real valued in view of Lemmas 4.2 and 4.3.
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5. Computation of the Small Eigenvalues

Now that we have found (�j)j≥0 ⊂ C∞(B0(s, 2r),R) solving (3.12) and (3.13)
with �0 vanishing at (s, 0), we can use a Borel procedure to construct � ∈
C∞(R2d,R) supported in B0(s, 3r) and satisfying � ∼∑j≥0 �j on B0(s, 2r).

Remark 5.1. The properties a)-c) from (3.7) are satisfied by both the functions
�s,h and −�s,h. Moreover, by Lemma 4.3, (−�sj)j≥0 also solve (3.12) and (3.13).

We are now in position to prove that all the properties from (3.7) are satisfied.

Proposition 5.2. We can choose the signs of the functions (�s,h)j(m) such that
(3.7) holds true and the coefficients from the classical expansion of �s,h solve
(3.12) and (3.13).

Proof. Recall that by item b) from Hypothesis 3.11, each function �s,h corre-
sponds to a unique m ∈ U (0)\{m}. Thanks to Lemmas 4.5 and 4.6, it is clear
that item d) from (3.7) is satisfied by both �s,h and −�s,h. Hence according to
Remark 5.1, it is sufficient to prove that the signs of (�s,h)j(m) can be chosen
so that θm,h is smooth on a neighborhood of supp χm. From (3.9), (3.10) and
(3.11) we see that the only parts on which it is not clear that θm,h is smooth
are

F1 =
⊔

s∈j(m)

(
{|�s0| ≤ 2γ} ∩ ∂B0(s, r)

)
, F2 =

⊔

s∈j(m)

(
B0(s, r) ∩ {|�s0| = 2γ}

)

and F3 = ∂
(
E(m) + B(0, ε)

)
\
( ⊔

s∈j(m)

(
B0(s, r) ∩ {|�s0| ≤ 2γ})

)
.

Here, the unions are disjoint for r small enough. Let s ∈ j(m) and (x, v) ∈
B0(s, r)\{(s, 0)} such that �s0(x, v) = 0. Using Lemma 4.6, we see that if r > 0
is small enough,

W (x, v) − W (s, 0) = φ+(x, v) > 0 (3.1)

because (s, 0) is a non-degenerate local minimum of φ+. Hence, {�s0 = 0} ∩
B0(s, r) ⊂ {W ≥ σ(m)}. Now, assume by contradiction that for any r > 0,
the function �s0 takes both positive and negative values on E(m) ∩ B0(s, r).
Then according to Lemma 3.1, the two CCs of Ur ∩ {W < σ(m)} are both
included in E(m) (the one on which �s0 > 0 and the one where �s0 < 0). This
is a contradiction with the fact that s ∈ V(1). Therefore, �s0 has a sign on
E(m) ∩ B0(s, r) and we can choose it so that �s0 is a positive function on
E(m) ∩ B0(s, r). By uniform continuity, we can then choose ε(γ) > 0 small
enough so that

((
E(m) + B(0, ε)

) ∩ B0(s, r)
)

⊆ {�s0 ≥ −γ
}
. (3.2)

Similarly, if we denote Ωs the other CC of {W < σ(m)} which contains (s, 0)
on its boundary, we have since (s, 0) is not a critical point of �s0 that this
function is negative on Ωs ∩ B0(s, r) and

((
Ωs + B(0, ε)

) ∩ B0(s, r)
)

⊆ {�s0 ≤ γ
}
. (3.3)
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Choosing once again ε(r) small enough, we can even assume that
(
E(m) + B(0, ε) ∩ Ωs + B(0, ε)

)
⊆ B0(s, r). (3.4)

We first prove that F1 does not meet the support of χm. Recall that Ω denotes
the CC of {W ≤ σ(m)} containing m. For s ∈ j(m), we can deduce from (3.1)
that if (x, v) ∈ ∂B0(s, r) such that �s0(x, v) = 0, then (x, v) /∈ Ω. Hence, |�s0|
must attain a positive minimum on ∂B0(s, r) ∩ Ω, so we can choose γ(r) > 0
such that ∂B0(s, r) ∩ {|�s0| ≤ 2γ} does not intersect Ω. It follows that we can
choose ε(γ) > 0 such that

F1 ⊆ (R2d\Ω + B(0, ε)
) ⊆ (R2d\supp χm

)
.

Now, we show that θm,h is smooth on F2 ∩ (Ω + B(0, ε)): Let s ∈ j(m) and
(x, v) ∈ B0(s, r) ∩ {�s0 = 2γ} ∩ (Ω + B(0, ε)). According to (3.3) and the fact
that �s,h = �s0 + O(h), there exists a small ball B centered in (x, v) such that

B ⊂
(
B0(s, r) ∩ {�s,h > γ} ∩ (E(m) + B(0, ε)

))
.

Thus, θm,h = 1 on B and θm,h is smooth at (x, v). Similarly, for (x, v) ∈
B0(s, r) ∩ {�s,h = −2γ} ∩ (Ω + B(0, ε)), we can show that θm,h = 0 in a
neighborhood of (x, v).

It only remains to prove that, as for F1, the set F3 does not meet the
support of χm. First we remark that thanks to (3.2), we can forget the absolute
value in the definition of F3:

F3 = ∂
(
E(m) + B(0, ε)

)
\
( ⊔

j(m)

(
B0(s, r) ∩ {�s0 ≤ 2γ})

)
.

If (x, v) ∈ F3 ∩ B0(s, r), we have that �s0(x, v) > 2γ so using (3.3), we see
that (x, v) is outside Ωs + B(0, ε). Since it is not in (E(m) + B(0, ε)) either,
it is outside Ω + B(0, ε) which contains the support of χm. Now, if (x, v) ∈
F3\
(
jW (m)+B0(0, r)

)
, (3.4) implies that (x, v) is outside ∪j(m)(Ωs +B(0, ε))

so it is also outside Ω + B(0, ε) for ε small enough and the proof is complete.

Lemma 5.3. Let m ∈ U (0)\{m} and denote f̃m,h = fm,h/‖fm,h‖ where fm,h

was defined in (3.13). With the notation (3.16), we have that

〈Phf̃m,h, f̃m,h〉 = he−2 S(m)
h

det(HessmV )1/2

2π
B̃h(m) ∈ R

with B̃h(m) admitting a classical expansion whose first term equals
∑

s∈j(m)

|det(HesssV )|−1/2 αs
0.

Proof. Since Xh
0 is a skew-adjoint differential operator and fm,h is real valued,

we have

〈Xh
0 fm,h, fm,h〉 = 0.

Besides, we know from (3.18) that

bhfm,h = h(∂vθ)χe−Wm/h + OL2(h∞e−S(m)/h) (3.5)
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so we easily deduce from the fact that (∂vθ)χe−Wm/h = OL2(e−S(m)/h) and
the boundedness of Oph(Mh) that

〈Qhfm,h, fm,h〉 = h2
〈
Oph(Mh)

(
(∂vθ)χe−Wm/h

)
, (∂vθ)χe−Wm/h

〉

+O
(
h∞e− 2S(m)

h

)
.

Since we have with the notation (3.15)

(∂vθ)χe−Wm/h =
A−1

h

2
e−W̃m/hχ

∑

s∈j(m)

ζ(�s)∂v�s 1B0(s,r)

and using (3.23) with M instead of g, we get that

〈Phfm,h, fm,h〉 =
h2

4
A−2

h

∑

s∈j(m)

∫

B0(s,r)

e−2W̃m(x,v)/hχζ(�s)Ĩs(x, v) · ∂v�s d(x, v)

+ O
(
h∞e−2 S(m)

h

)
. (3.6)

where

Ĩs(x, v) = (2πh)−d

∫

Rd

∫

|v′|≤r

e
i
h η·(v−v′)χ(x, v′)ζ

(
�s(x, v′)

)

M
(
x,

v + v′

2
, η + iψ(x, v, v′)

)
∂v�s(x, v′) dv′dη.

Mimicking the proof of Proposition C.5, one can show that ζ(�) admits a
classical expansion whose first term is ζ(�0). Besides, since M and ψ also have
a classical expansion, we could use the stationary phase (see, for instance, [21],
Theorem 3.17) as well Proposition C.3 to get an expansion of Ĩ similar to the
one obtained in (3.9). Thus, we get that Ĩ · ∂v� ∼∑k≥0 hkak where

a0(x, v) = χ(x, v)ζ (�0(x, v)) M0

(
x, v, i

(v

2
+ �0 ∂v�0

))
∂v�0(x, v) · ∂v�0(x, v).

Hence, using the fact that on B0(s, r),

W̃ − S(m) = Wm +
�20
2

− S(m) +
(�2

2
− �20

2

)
,

it is clear that

e2S(m)/h

∫

B0(s,r)

e−2W̃ (x,v)/hχζ(�)Ĩ(x, v) · ∂v�d(x, v) ∼h

∑

k≥0

hk

∫

B0(s,r)

e−2
Wm(x,v)+�20(x,v)/2−S(m)

h e− (�2−�20)(x,v)
h χζ(�)ak d(x, v). (3.7)

We would like to apply Proposition C.7 so we need to check that the assump-
tions are satisfied. First, Hess(s,0)(Wm + �20/2) is definite positive by Lemma
4.5. Besides, h−1(�2 − �20) admits a classical expansion whose first term is
2(�1�0). Therefore, using the expansion of ζ(�) as well as Proposition C.5, one
easily gets that the function

e− (�2−�20)
h

(
ζ ◦ �
)
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admits a classical expansion whose first term is e−2(10)
(
ζ ◦ �0
)
. Thus, accord-

ing to Propositions C.7 and 4.7, there exists (bk,j) such that

|det(HesssV )|1/2

(2πh)d

∫

B0(s,r)

e−2
Wm(x,v)+�20(x,v)/2−S(m)

h e− (�2−�20)(x,v)
h χζ(�)ak d(x, v)

∼
∑

j≥0

hjbk,j

where bk,0 = ak(s, 0). Hence, using (3.6), (3.7) and Proposition C.3, we deduce
that

4A2
h(2π)−dh−d−2e2S(m)/h〈Phfm,h, fm,h〉 ∼

∑

k≥0

hkck (3.8)

with

c0 =
∑

s∈j(m)

|det(HesssV )|−1/2M0(s, 0, 0)νs
2 · νs

2 =
∑

s∈j(m)

|det(HesssV )|−1/2 αs
0.

Similarly, thanks to item (a) from Hypothesis 3.11, one can use Proposition
C.7 as we already did to see that there exists (c̃k)k≥0 such that

det(HessmV)1/2

(2πh)d
‖fm,h‖2 ∼

∑

k≥0

hk c̃k (3.9)

with c̃0 = 1. The conclusion follows from (3.8), (3.8) and (3.9).

Lemma 5.4. Let m ∈ U (0)\{m}. Using the notations from Lemma 5.3, we have

(i) ‖Phf̃m,h‖2 = O(h∞〈Phf̃m,h, f̃m,h〉)
(ii) ‖P ∗

h f̃m,h‖2 = O(h〈Phf̃m,h, f̃m,h〉).
Proof. To prove i), first remark that thanks to (3.17)–(3.20) we have
∫

R2d\(jW (m)+B0(0,2r))

|Phfm,h(x, v)|2d(x, v) = O
(
h∞e−2 S(m)

h

)
. (3.10)

Besides, we saw that thanks to Proposition C.7 and Lemma 4.5, we have for
s ∈ j(m),

∫

B0(s,2r)

e−2 W̃ (x,v)
h d(x, v) = O

(
hde−2 S(m)

h

)
.

Moreover, the function ω from Proposition 3.13 is OL∞(B0(s,2r))(h∞) by
Lemma 4.1 and the construction of the (�s,h)s∈j(m). Hence, by Proposition
3.13,

∫

B0(s,2r)

|Phfm,h(x, v)|2d(x, v) = O
(
h∞e−2 S(m)

h

)
. (3.11)

The conclusion follows from (3.10), (3.11) as well as (3.9) and Lemma 5.3.
The proof of ii) can be obtained similarly with the use of Proposition C.7 and
Remark 3.14 after noticing that

∗
ω also admits a classical expansion whose first

term vanishes on jW (m).
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From now on, we denote

λ̃m,h = 〈Phf̃m,h, f̃m,h〉 = 〈Qhf̃m,h, f̃m,h〉 (3.12)

for which we computed a classical expansion in Lemma 5.3.

Lemma 5.5. For m and m′ two distinct elements of U (0), we have

(i) 〈Phf̃m,h, f̃m′,h〉 = O
(
h∞
√

λ̃m,hλ̃m′,h

)

(ii) There exists c > 0 such that 〈f̃m,h, f̃m′,h〉 = O(e−c/h)

Proof. (i): The result is obvious when one of the two minima is m. Recall
the labeling of the minima that we introduced right before Hypothesis 3.11 as
well as the map πx from Lemma 3.8. Let us first suppose that m = mk,j and
m′ = mk,j′ with j �= j′ and k �= 1 and denote E = E(m) and E′ = E(m′). In
particular σ(m) = σ(m′). Thanks to (3.14) and the fact that Ph is local in x,
we have

supp Phf̃m,h ⊆ (πx(E) × R
d
v

)
+ B(0, ε′) and supp f̃m′,h ⊆ (E′ + B(0, ε′)

)

so up to taking ε′ small enough, it is sufficient to show that πx(E) × Rd
v and

E′ do not intersect. Since our labeling is adapted, E and E′ are two distinct
CCs of {W < σ(m)} so by Lemma 3.8, πx(E) × R

d
v and E′ are two disjoint

open sets. Thus, using successively Remark 3.7 and (3.4), we get

πx(E) × Rd
v ∩ E′ =

(
∂
(
πx(E)

)× R
d
v

)
∩ ∂E′

⊆
(
∂
(
πx(E)

)× {0}
)

∩ ∂E′

⊆
(
∂
(
πx(E)

) ∩ ∂
(
πx(E′)

))× {0}.

which is empty thanks to Lemma 3.2 and item b) from Hypothesis 3.11.
Let us now treat the case m = mk,j and m′ = mk′,j′ with k, k′ ≥ 2 and

k �= k′. We can suppose that k < k′ (i.e., σ(m) > σ(m′)) because we can
work with P ∗

h instead of Ph if needed. We decompose Phf̃m,h as in (3.17) and
(3.18) and once again we use (3.14) to get

supp f̃m′,h ⊆ (E′ + B(0, ε′)
) ⊆
{

W <
σ(m) + σ(m′)

2

}

as well as the fact that Ph is local in x to get a localization of the support of
the first term from (3.18):

supp
(
Oph(g)

(
(∂vθm)χme−Wm/h

)) ⊆
((

j(m) + B(0, r)
)× R

d
v

)

⊆
{

W >
σ(m) + σ(m′)

2

}

as W increases with the norm of v. Hence, the support of the first term from
(3.18) does not meet the one of f̃m′,h. The same goes easily for the first term
of (3.17). For the second term of (3.17), its support is contained in the support
of ∇χm which is itself contained in {W ≥ σ(m) + ε̃} so it clearly does not
meet the support of f̃m′,h. It only remains to treat the second term from
(3.18), i.e., Oph(g)

(
θm(∂vχm)e−Wm/h

)
. To this aim, notice that (3.5) yields
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bhfm′,h = OL2(e−S(m′)/h) and since by the support properties of ∇χm we
also have θm(∂vχm)e−Wm/h = OL2(h∞e−S(m)/h), we get using the Cauchy–
Schwarz inequality and the boundedness of Oph(M)
〈
Oph(g)

(
θm(∂vχm)e−Wm/h) , fm′,h

〉
=
〈
Oph(M)

(
θm(∂vχm)e−Wm/h) , bhfm′,h

〉

= O
(
h∞e− S(m)+S(m′)

h

)

which proves the first item.
(ii): Here, we can suppose that V (m) ≥ V (m′). Let us first treat the case
where V (m) = V (m′). Then according to item a) from Hypothesis 3.11, E
and E′ are two disjoint open sets. Hence, as we saw earlier, Lemma 3.2 and
item b) from Hypothesis 3.11 imply that E ∩ E′ = ∅. The conclusion then
follows from (3.14).

If V (m) > V (m′), then item a) from Hypothesis 3.11 implies that (m, 0)
is the only global minimum of W |E+B(0,ε′). Therefore using (3.14), we can
easily compute

〈fm,h, fm′,h〉 =
∫

E+B(0,ε′)
θmθm′χmχm′e− 2V −V (m)−V (m′)+v2

2h d(x, v)

= O
(
e− V (m)−V (m′)

2h

)
.

The conclusion immediately follows from (3.9).

Let us consider once again the spectral projection introduced in (2.5). We saw
in particular that Π0 = O(1).

Lemma 5.6. For any m ∈ U (0), we have

‖(1 − Π0)f̃m,h‖ = O
(
h∞
√

λ̃m,h

)
and ‖(1 − Π∗

0)f̃m,h‖ = O
(
h−3/2

√
λ̃m,h

)
.

Proof. We simply recall the proof from [12]: We write

(1 − Π0)f̃m,h =
1

2iπ

∫

|z|=ch2

(
z−1 − (z − Ph)−1

)
f̃m,hdz

=
−1
2iπ

∫

|z|=ch2
z−1(z − Ph)−1Phf̃m,hdz.

We can then conclude using Lemma 5.4 and the resolvent estimate from The-
orem 1.6. The proof for the adjoint is almost identical.

Lemma 5.7. The family (Π0f̃m,h)m∈U(0) is almost orthonormal: There exists
c > 0 such that

〈Π0f̃m,h,Π0f̃m′,h〉 = δm,m′ + O(e−c/h).

In particular, it is a basis of the space H = Ran Π0 introduced in (2.5).
Moreover, we have

〈PhΠ0f̃m,h,Π0f̃m′,h〉 = δm,m′ λ̃m,h + O
(
h∞
√

λ̃m,hλ̃m′,h

)
.

Proof. The proof is the same as the one of Proposition 4.10 in [12].
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Let us re-label the local minima m1, . . . ,mn0 so that (S(mj))j=1,...,n0 is non-
increasing in j. For shortness, we will now denote

f̃j = f̃mj ,h and λ̃j = λ̃mj ,h

which still depend on h. Note in particular that according to Lemma 5.3,
λ̃j = O(λ̃k) whenever 1 ≤ j ≤ k ≤ n0. We also denote (ũj)j=1,...,n0 the orthog-
onalization by the Gram–Schmidt procedure of the family (Π0f̃j)j=1,...,n0 and

uj =
ũj

‖ũj‖ .

In this setting and with our previous results, we get the following (see [12],
Proposition 4.12 for a proof).

Lemma 5.8. For all 1 ≤ j, k ≤ n0, it holds

〈Phuj , uk〉 = δj,kλ̃j + O
(
h∞
√

λ̃j λ̃k

)
.

In order to compute the small eigenvalues of Ph, let us now consider the restric-
tion Ph|H : H → H. We denote ûj = un0−j+1, λ̂j = λ̃n0−j+1 and M the matrix
of Ph|H in the orthonormal basis (û1, . . . , ûn0). Since ûn0 = u1 = f̃1, we have

M =
(M′ 0

0 0

)
where M′ =

(
〈Phûj , ûk〉

)

1≤j,k≤n0−1

and it is sufficient to study the spectrum of M′. We will also denote {Ŝ1 <

· · · < Ŝp} the set {S(mj) ; 2 ≤ j ≤ n0} and for 1 ≤ k ≤ p, Ek the subspace of
L2(R2d) generated by {ûr ; S(mr) = Ŝk}. Finally, we set �k = e−(Ŝk−Ŝk−1)/h

for 2 ≤ k ≤ p and εj(�) =
∏j

k=2 �k = e−(Ŝj−Ŝ1)/h for 2 ≤ j ≤ p (with the
convention ε1(�) = 1).

Proposition 5.9. There exists a diagonal matrix M#
h admitting a classical

expansion whose first term is

M#
0 = diag

⎛

⎝
∑

s∈j(mn0−j+1)

det(Hessmn0−j+1V )1/2

2π|det(HesssV )|1/2
αs

0 ; 1 ≤ j ≤ n0 − 1

⎞

⎠

such that

h−1e2Ŝ1/hM′ = Ω(�)
(
M#

h + O(h∞)
)
Ω(�)

where Ω(�) = diag
(
ε1(�)IdE1 , . . . , εp(�)IdEp

)
.

Remark 5.10. In the words of Definition 6.7 from [1], the last Proposition
implies that h−1e2Ŝ1/hM′ is a classical graded symmetric matrix.

Proof. According to Lemma 5.8, we can decompose M′ = M′
1 + M′

2 with

M′
1 = diag(λ̂j ; 1 ≤ j ≤ n0 − 1) and M′

2 =
(
O
(
h∞
√

λ̂j λ̂k

))

1≤j,k≤n0−1
.
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We will take M#
h = h−1e2Ŝ1/hΩ(�)−1M′

1Ω(�)−1 which is clearly diagonal,
so we just need to check that it has the proper classical expansion and that
h−1e2Ŝ1/hΩ(�)−1M′

2Ω(�)−1 = O(h∞). It is easy to compute

h−1e2Ŝ1/hΩ(�)−1M′
1Ω(�)−1 = h−1diag

(
e2Ŝj′/hλ̂j ; 1 ≤ j ≤ n0 − 1

)

where 1 ≤ j′ ≤ p is such that Ŝj′ = S(mn0−j+1). Hence, Lemma 5.3 yields

h−1e2Ŝ1/hΩ(�)−1M′
1Ω(�)−1 = diag

(
det(Hessmn0−j+1V )1/2

2π
B̃h(mn0−j+1) ; 1 ≤ j ≤ n0 − 1

)

where B̃h(mn0−j+1) was introduced in Lemma 5.3 and admits a classical
expansion whose first term is

∑

s∈j(mn0−j+1)

|det(HesssV )|−1/2 αs
0

so M#
h has the desired expansion. Similarly, still using Lemma 5.3, one easily

gets

Ω(�)−1M′
2Ω(�)−1 =

(
O
(
h∞
√

λ̂j λ̂k εj′(�)−1εk′(�)−1
))

1≤j,k≤n0−1

where 1 ≤ j′ ≤ p and 1 ≤ k′ ≤ p are such that
√

λ̂j εj′(�)−1 and
√

λ̂k εk′(�)−1 are both O(
√

h e−Ŝ1/h) so the proof is complete.

Proof of Theorem 1.8. According to Remark 5.10, it now suffices to combine
the result of Proposition 5.9 with Theorem 4 from [1] which gives a description
of the spectrum of classical graded almost symmetric matrices. Indeed, using
the notations from this reference, we have for 1 ≤ j ≤ p that

J ◦ Rj

(
M#

h + O(h∞)
)

= J ◦ Rj

(
M#

h

)
+ O(h∞)

and the result comes easily since M#
h is diagonal. Therefore, we have actually

proved that Bh(m) from Theorem 1.8 and B̃h(m) from Lemma 5.3 have the
same classical expansion.

6. Return to Equilibrium and Metastability

The goal of this section is to prove Corollaries 1.10 and 1.11. We assume
that the hypotheses of Theorem 1.8 are satisfied and we choose m∗ among
the elements of U (0)\{m} for which S is maximal such that the expansion of
det(Hessm∗V )1/2Bh(m∗) is minimal. According to Lemma 5.3 and Theorem
1.8, one can think of λm∗,h as the nonzero eigenvalue of Ph with the smallest
real part modulo O(h∞e−2S(m∗)/h). We will denote P1 the orthogonal projec-
tion on Ker Ph and for shortness λ∗ instead of λm∗,h.
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Proof of Corollary 1.10. We follow the proof of Theorem 1.11 in [12]. We have
that

‖e−tPh/h − P1‖ ≤ ‖e−tPh/hΠ0 − P1‖ + ‖e−tPh/h(1 − Π0)‖.

and thanks to Proposition 2.8 and Proposition 2.1 from [8], we easily get

e−tPh/h(1 − Π0) = O(e−cht).

Thus, it suffices for the first statement to prove that

‖e−tPh/hΠ0 − P1‖ ≤ CNe−Re λ∗(1−CN hN )t/h.

We recall that thanks to the resolvent estimates from Theorem 1.6, Π0 = O(1)
and since P1 is an orthogonal projection on Ker Ph, we have that

e−tPh/hΠ0 − P1 = e−tPh/h(Π0 − P1)

and (Π0 − P1) = O(1). Therefore, it is sufficient to prove that

‖e−tPh/h|Ran(Π0−P1)‖ ≤ CNe−Re λ∗(1−CN hN )t/h. (3.1)

Besides, we saw in Sect. 2 that Ker Ph = CMh where Mh was defined in (1.2)
and since the operator Π0 from (2.5) satisfies Π∗

0Mh = Mh, we get that M⊥
h

is invariant under Π0 so Ran(Π0 − P1) = H ∩ M⊥
h . Thus, with the notations

from Proposition 5.9 and according to (3.1), it only remains to show that

‖e−tM′/h‖ ≤ CNe−Re λ∗(1−CN hN )t/h.

This can be done following the steps of [12], proof of Theorem 1.11 as with
the notation (3.12) we have Re λ∗ ≤ λ̃m∗,h(1 + CNhN ). The only difference is
that here we have to apply the resolvent estimates given by Theorem 4 from
[1] instead of the ones given by Theorem A.4 from [12]. For the last statement,
we now assume that for m ∈ U (0)\{m∗}, the expansion of λ(m, h) given by
Theorem 1.8 differs from the one of λ∗ = λ(m∗, h). In that case, it is clear
that λ∗ is a simple eigenvalue but it also happens to be a real one. Indeed,
using the fact that Xh

0 and bh are differential operators with real coefficients
and that Mh is real valued and even in the variable η, we get that λ is an
eigenvalue of Ph if and only if λ is an eigenvalue of Ph. The rest of the proof
is then also similar to the end of the proof of Theorem 1.11 from [12]. �

Finally, the proof of Corollary 1.11 is a straightforward adaptation of the one
of Corollary 1.6 from [1]. (Note that our notations t−k and t+k differ from that
in [1].)
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Appendix A: Proof of Lemma 1.4

Let us begin by showing that there exists a self-adjoint operator A such that

�(H0) = b∗
h ◦ A ◦ bh. (A.1)

Since �(0) = 0, there exists an analytic function �̃ such that �(z) = z�̃(z)
and |�̃(z)| ≤ C〈z〉−1. Using Cauchy’s formula, one easily gets that for all
z0 ∈ {Re z > − 1

2C } and f an analytic function on {Re z > − 1
C } satisfying

f(z) = O(〈z〉−β) for some β > 0, we have that

f(z0) =
−1
2iπ

∫

{Re z=− 1
2C }

f(z)(z0 − z)−1dz. (A.2)

Working with a Hilbert basis of eigenfunctions of H0, this identity yields

f(H0) =
−1
2iπ

∫

{Re z=− 1
2C }

f(z)(H0 − z)−1dz. (A.3)

Besides, denoting

bh =

⎛

⎜
⎝

b1
h
...

bd
h

⎞

⎟
⎠ ,

we have bhH0 = (bj
hH0)1≤j≤d and using the identity bj

hH0 = b∗
hbhbj

h + hbj
h, we

get bhH0 = H1bh where

H1 =

⎛

⎜
⎝

H0 + h
. . .

H0 + h

⎞

⎟
⎠ . (A.4)

In particular, if u is an eigenfunction of H0 associated with a positive eigen-
value, the function bhu is an eigenfunction of H1 associated with the same
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eigenvalue and therefore

H0(H0 − z)−1 = b∗
h(H1 − z)−1bh. (A.5)

It follows using (A.3) with f = �̃ that (A.1) holds with A = �̃(H0 + h) ⊗ Id:

�(H0) = H0�̃(H0) = b∗
h ◦ �̃(H0 + h) ⊗ Id ◦ bh.

We can improve the integrability in the integral representation of �̃(H0 + h)
by writing

�̃(z) =
�̃(z)
1 + z

+
�(z) − �∞

1 + z
+

�∞
1 + z

which yields always thanks to (A.3)

�̃(H0 + h) ⊗ Id =
−1
2iπ

∫

{Re z=− 1
2C }

�̃(z)
1 + z

(H1 − z)−1dz

+
−1
2iπ

∫

{Re z=− 1
2C }

�(z) − �∞
1 + z

(H1 − z)−1dz + �∞(H1 + 1)−1.

(A.6)

Besides, it is well known (see, for instance, [4]) that the resolvent (H1 − z)−1

is a pseudo-differential operator and we denote its symbol Rz(v, η). Thanks to
[3], we even have the explicit expression Rz(v, η) = Gz(v2/2 + 2η2) Id where
Gz is an entire function defined by

Gz(μ) = 2h−1

∫ 1

0

(1 − s)− z
h (1 + s)

z
h +d−2e− s

h μds

= 2
∫ h−1

0

(1 − hσ)− z
h (1 + hσ)

z
h +d−2e−σμdσ.

Let us then set in view of (A.6)

Mh(v, η) =
−1
2iπ

∫

{Re z=− 1
2C }

�̃(z)
1 + z

Rz(v, η)dz +
−1
2iπ

∫

{Re z=− 1
2C }

�(z) − �∞
1 + z

Rz(v, η)dz + �∞R−1(v, η) (A.7)

and we now want to show that Mh is a matrix of symbols matching the
properties listed in Hypothesis 1.3. To this purpose, we need to study more
carefully the function Rz for z fixed such that Re z ≤ −1/2C. We already saw
that it is analytic in both variables v and η. Now, if we take (v, η) ∈ R

d × Στ

and put μ = v2/2 + 2η2, we get that μ belongs to the sector

Dτ = {μ ∈ C; |Im μ| ≤ Re μ + 4dτ2}.
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One can then easily adapt Theorem 10 from [3] to show that for n ∈ N and
μ ∈ Dτ , we have

|∂n
μGz(μ)| ≤ C

∫ h−1

0

σn(1 − hσ)−Re z/h(1 + hσ)Re z/he−Re μσdσ

≤ C

∫ +∞

0

σne−(Re μ−2Re z)σdσ ≤ Cn〈μ〉−(n+1) (A.8)

since Re μ−2Re z > 0 for τ small enough. From (A.8) we can already conclude
that Mh ∈ Md

(
S0

τ (〈(v, η)〉−2)
)
. Thus, �̃(H0 + h) ⊗ Id = Oph(Mh) with Mh

sending R
2d in Md(R) as H0 is self-adjoint. Moreover, since Rz is diagonal

and even in the variable η, it is also the case of Mh. It only remains to prove
that Mh satisfies items b) and d) from Hypothesis 1.3. In order to avoid some
tedious computations, instead of proving the whole expansion from item b), we
only show that Mh admits a principal term M0 in Md

(
S0

τ (〈(v, η)〉−2)
)

from
which we will deduce that item d) is satisfied. One easily gets for Re z ≤ −1/2C
and μ ∈ Dτ fixed by dominated convergence that

lim
h→0

Gz(μ) = 2
∫ ∞

0

eσ(2z−μ)dσ =
1

μ/2 − z
=: G0

z(μ). (A.9)

We would like to get some estimates of the derivatives ∂n
μ(Gz − G0

z) in
O(h〈μ〉−n−1) on Dτ uniformly in z ∈ {Re z ≤ −1/2C} in order to apply
the formula (A.7) to those. We have

∂n
μ(Gz − G0

z)(μ) = 2
∫ h−1

0[
exp
(

z
[ 1
h

ln
(1 + hσ

1 − hσ

)
− 2σ
]

+ (d − 2) ln(1 + hσ)
)

− 1
]
(−σ)neσ(2z−μ)dσ

− 2
∫ ∞

h−1
(−σ)neσ(2z−μ)dσ

= 2
∫ h−1/2

0

[
exp
(

z
[ 1
h

ln
(1 + hσ

1 − hσ

)
− 2σ
]

+ (d − 2) ln(1 + hσ)
)

− 1
]

(A.10)

(−σ)neσ(2z−μ)dσ + O
(
e

Re (2z−μ)
Ch

)
.

Let us denote

gz,h(σ) =
[

exp
(

z
[ 1
h

ln
(1 + hσ

1 − hσ

)
− 2σ
]

+ (d − 2) ln(1 + hσ)
)

− 1
]
(−σ)n

and observe that for all 0 ≤ k ≤ n, one has

∂k
σgz,h(0) = 0 and ∂k

σgz,h(h−1/2) = O(h−n〈z〉k). (A.11)

Besides, on σ ∈ [0, h−1/2], it holds

∂n+1
σ gz,h(σ) =

n+1∑

j=1

O
(
h〈z〉j〈σ〉jσj−1

)
. (A.12)
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Now, let us do n + 1 integrations by parts in the first term from (A.10). By
(A.11), each boundary term is O(h−n〈z〉k〈2z − μ〉−(k+1)eRe (2z−μ)/Ch), while
the remaining integral term satisfies

∣
∣
∣
∣

2
(μ − 2z)n+1

∫ h−1/2

0

∂n+1
σ gz,h(σ)eσ(2z−μ)dσ

∣
∣
∣
∣

≤ Cnh

n+1∑

j=1

〈z〉j

|2z − μ|n+1

∫ ∞

0

σj−1〈σ〉jeσ Re(2z−μ)dσ

≤ Cnh〈μ〉−(n+1)

thanks to (A.12). Thus, we have shown that for n ∈ N, μ ∈ Dτ and Re z ≤
−1/2C,

|∂n
μ(Gz − G0

z)(μ)| ≤ Cnh〈μ〉−(n+1).

Putting R0
z(v, η) = G0

z(v
2/2 + 2η2) Id and defining M0(v, η) as in (A.7) with

Rz replaced by R0
z, we deduce that

|∂α(Mh − M0)(v, η)| ≤ Cαh〈(v, η)〉−2 on R
d × Στ

so item b) from Hypothesis 1.3 holds true. Finally, by definition of M0 and
thanks to (A.9) and (A.2), we have

M0(v, η) = �̃
(
v2/4 + η2

)
Id ≥ 1

C
〈(v, η)〉−2 Id (A.13)

by assumption on �. Therefore, item d) from Hypothesis 1.3 holds true and
the proof is complete.

Appendix B: Linear Algebra Lemma

We use the following lemma which is inspired by [1], Lemma 2.6.

Lemma B.1. Let M ∈ Md′(C) such that M = S(A+T ) with S Hermitian and
invertible, A skew-Hermitian and T Hermitian positive semidefinite. Suppose
moreover that

M(Ker T ) ∩ Ker T = Ker M ∩ Ker T = {0}.

Then, M has no spectrum in iR.

Proof. Let λ ∈ R and X ∈ Ker [M − iλ], we first show that X ∈ Ker T . Since
T is Hermitian positive semidefinite, it is sufficient to show that 〈TX,X〉 = 0.
Using the properties of S, A and T , we have

〈TX,X〉 = Re
〈
(A + T )X,X

〉

= Re
〈
S−1S(A + T )X,X

〉

= Re
(
iλ
〈
S−1X,X

〉)

= 0
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so X ∈ Ker T . Thanks to the assumption, it only remains to prove that X ∈
Ker M . This can be done easily by noticing that

MX = iλX ∈ M(Ker T ) ∩ Ker T

so MX = 0 by assumption.

Appendix C: Asymptotic Expansions

Let d′ ∈ N
∗. Here, we use the convention

∑−1
j=0 aj = 0 for any sequence (aj)j≥0

in a vector space. For K ⊆ R
d′

, the notation a = OC∞(K)(hN ) (respectively,
a = OL∞(K)(hN )) means that for all β ∈ N

d′
, there exists Cβ,N such that

‖∂βa‖∞,K ≤ Cβ,NhN (resp. there exists CN such that ‖a‖∞,K ≤ CNhN ). We
will also use the notations from Definition 1.2 and (1.6).

Proposition C.1. Let m ∈ N
∗; d1, . . . , dm ∈ N

∗ and for 1 ≤ j ≤ m, Kj ⊂ R
dj

some compact sets. Let a smooth function

φh :
m∏

j=1

Kj → K ⊂ Στ

such that φh = OC∞(
∏m

j=1 Kj)(1). Consider gh ∼h

∑
n≥0 hngn in S0

τ (1) or in
C∞(K) if φh actually takes values in R

d. Then,

gh ◦ φh ∼h

∑

n≥0

hn(gn ◦ φh)

in C∞(
∏m

j=1 Kj).

Proof. Let N ∈ N and denote rN = gh −∑N−1
n=0 hngn = OS0

τ (1)(hN ).

gh ◦ φh =

(
N−1∑

n=0

hngn + rN

)

◦ φh

=
N−1∑

n=0

hn(gn ◦ φh) + rN ◦ φh.

But since all the derivatives of φh are bounded uniformly in h, and the ones
of rN are OL∞(Στ )(hN ), we see that rN ◦ φh is OC∞(

∏m
j=1 Kj)(h

N ) so we have
the announced result.

Proposition C.2. Since the matrix Mh from Hypothesis 1.3 satisfies Mh ∼∑
n≥0 hnMn in Md

(
S0

τ (〈(v, η)〉−2)
)
, the vector of symbols gh defined in

Remark 3.12 also admits a classical expansion gh ∼ ∑
n≥0 hngn in

M1,d

(
S0

τ (〈(v, η)〉−1)
)
, where the (gn) are given by

g0(x, v, η) =
(

− i tη +
tv

2

)
M0(x, v, η)
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and

gn(x, v, η) =
(

−i tη +
tv

2

)
Mn(x, v, η) − 1

2

(
t∇v − i

2
t∇η

)
Mn−1(x, v, η)

for n ≥ 1.

Proof. We have

gh = (−i tη + tv/2)Mh − h

2

(
t∇v − i

2
t∇η

)
Mh

, and the last term clearly admits the expansion

−
∑

n≥1

hn 1
2

(
t∇v − i

2
t∇η

)
Mn−1

in S0
τ (〈(v, η)〉−2). For the first term of gh, it suffices to notice that for any

N ∈ N,
(

− i tη +
tv

2

)
OMd

(
S0

τ (〈(v,η)〉−2)
)(hN ) = OM1,d

(
S0

τ (〈(v,η)〉−1)
)(hN ).

Proposition C.3. Let K a compact set in R
d′

and a ∼h

∑
n≥0 hnan in C∞(K)

such that for all n ≥ 0, an ∼h

∑
j≥0 hjan,j in C∞(K). Then,

a ∼h

∑

n≥0

hn
n∑

j=0

aj,n−j in C∞(K).

Proof. It suffices to write for N ∈ N

a =
N−1∑

n=0

hn

⎛

⎝
N−1−n∑

j=0

hjan,j + OC∞(K)(hN−n)

⎞

⎠+ OC∞(K)(hN )

=
N−1∑

n=0

hn
n∑

j=0

aj,n−j + OC∞(K)(hN ).

Proposition C.4. Let K a compact set in R
d′

and a ∈ C∞(K) such that for all
β ∈ N

d′
, there exists aβ,j ∈ C∞(K) such that ∂βa ∼ ∑j≥0 hjaβ,j in L∞(K).

Then, aβ,j = ∂βa0,j, i.e.,

a ∼
∑

j≥0

hja0,j in C∞(K).

Proof. For simplicity, we take d′ = 1. Let us denote aj = a0,j . By induction, it
is sufficient to prove the result for β = 1, i.e., prove that a1,j = a′

j . Here again,
it suffices to prove the case j = 0 which we can then apply to the function
h−1(a−a0) and so on. Let x in the interior of K and t ∈ R

∗ in a neighborhood
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of 0. We look at the differential fraction
a0(x + t) − a0(x)

t
=

a(x + t) − a(x)
t

+
O(h)

t

= a′(x) + t

∫ 1

0

(1 − s)a′′(x + st)ds +
O(h)

t

= a1,0(x) + O(h) + t

∫ 1

0

(1 − s)a′′(x + st)ds +
O(h)

t

−−−→
h→0

a1,0(x) + t

∫ 1

0

(1 − s)a2,0(x + st)ds.

Taking now the limit t → 0, we get a′
0(x) = a1,0(x) which was the desired

result.

Proposition C.5. Recall the notation (3.11) and let K ⊂ R
d′

a compact set,
Ψ : K → D(0, τ)d a smooth function such that Ψ ∼∑j≥0 hjΨj in C∞(K) and
b an analytic function on Στ . Then,

b ◦ Ψ ∼
∑

j≥0

hjbj (C.1)

in C∞(K), with

b0 = b ◦ Ψ0 and for j ≥ 1, bj =

j∑

|β|=1

∂βb ◦ Ψ0

β!

∑

s∈Sβ,j

∏

k∈Kβ

⎛

⎝
∑

a∈Aβ,s,k

βk∏

l=1

(
Ψal

)
k

⎞

⎠ ,

where Kβ = supp β = {k ∈ �1, d� ; βk �= 0}, Sβ,j = {s ∈ N
d ; supp s =

Kβ , |s| = j and s ≥ β} and Aβ,s,k = {a ∈ (N∗)βk ; |a| = sk}.
Proof. We first prove that (C.1) holds in L∞(K). Doing a Taylor expansion
of b, we have for N ∈ N

∗ that

b ◦ Ψ = b ◦ Ψ0 +
N−1∑

|β|=1

∂βb ◦ Ψ0

β!
(Ψ − Ψ0)β + O

(
(Ψ − Ψ0)N

)

= b ◦ Ψ0 +
N−1∑

|β|=1

∂βb ◦ Ψ0

β!
(Ψ − Ψ0)β + OL∞(K)(hN ) (C.2)

since Ψ − Ψ0 = OC∞(K)(h). Now, one can see that

(Ψ − Ψ0)β ∼
∑

j≥|β|
hj
∑

s∈Sβ,j

∏

k∈Kβ

(
∑

a∈Aβ,s,k

βk∏

l=1

(
Ψal

)
k

)

so (C.2) gives

b ◦ Ψ = b ◦ Ψ0 +

N−1∑

|β|=1

∂βb ◦ Ψ0

β!

[
N−1∑

j=|β|
h

j
∑

s∈Sβ,j

∏

k∈Kβ

⎛

⎝
∑

a∈Aβ,s,k

βk∏

l=1

(Ψal
)
k

⎞

⎠+ OC∞(K)(h
N

)

]

+ OL∞(K)(h
N

)

= b ◦ Ψ0 +

N−1∑

j=1

h
j

j∑

|β|=1

∂βb ◦ Ψ0

β!

∑

s∈Sβ,j

∏

k∈Kβ

( ∑

a∈Aβ,s,k

βk∏

l=1

(
Ψal

)
k

)
+ OL∞(K)(h

N
)
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which proves that (C.1) holds in L∞(K).
Besides, the derivatives of b ◦ Ψ are linear combinations of products of

some derivatives of Ψ with some ∂γb ◦Ψ where γ is a integer multi-index. Hence,
the expansion of Ψ in C∞(K) and the result that we just proved applied to
∂γb ◦ Ψ instead of b ◦ Ψ yield that for all β ∈ N

d′
, ∂β(b ◦ Ψ) admits a classical

expansion in L∞(K) whose coefficients are smooth. Therefore, Proposition C.4
enables us to conclude that (C.1) holds in C∞(K).

Corollary C.6. Using the notations from the proof of Lemma 4.1, we have

gn

(
x,

v + v′

2
, η + iψ(x, v, v′)

)
∼
∑

j≥0

hjgn,j(x, v, v′, η) on B0(s, 2r) × B∞(0, 2r)

with

gn,0(x, v, v′, η) = gn

(
x,

v + v′

2
, η + iψ0(x, v, v′)

)

and for j ≥ 1

gn,j(x, v, v′, η) = iDηgn

(
x,

v + v′

2
, η + iψ0(x, v, v′)

)(
ψj(x, v, v′)

)
+ R1

j (�0, . . . , �j−1)

where R1
j :
(C∞(B0(s, 2r))

)j → C∞(B0(s, 2r)).

Proof. Since ψ(s, 0, 0) = O(h), we can suppose that r was chosen small enough
so that (x, v, v′, η) �→ η + iψ(x, v, v′) sends B0(s, 2r) × B∞(0, 2r) in D(0, τ)d

Hence, we can use Proposition C.5 to get that

gn

(
x,

v + v′

2
, η + iψ(x, v, v′)

)
∼
∑

j≥0

hjgn,j(x, v, v′, η) on B0(s, 2r) × B∞(0, 2r)

with

gn,0(x, v, v′, η) = gn

(
x,

v + v′

2
, η + iψ0(x, v, v′)

)

and for j ≥ 1

gn,j(x, v, v′, η) =
j∑

|β|=1

i|β|

β!
∂β

η gn

(
x,

v + v′

2
, η + iψ0(x, v, v′)

) ∑

s∈Sβ,j

∏

k∈Kβ

( ∑

a∈Aβ,s,k

βk∏

l=1

(
ψal

)
k

)
(C.3)

where Kβ = supp β = {k ∈ �1, d� ; βk �= 0}, Sβ,j = {s ∈ N
d ; supp s =

Kβ , |s| = j and s ≥ β} and Aβ,s,k = {a ∈ (N∗)βk ; |a| = sk}. Now, we see
thanks to (C.3) that the terms of gn,j(x, v, v′, η) for which |β| = 1 yield

iDηgn

(
x,

v + v′

2
, η + iψ0(x, v, v′)

)(
ψj(x, v, v′)

)
,

while the terms for which |β| > 1 only feature the functions �0, . . . , �j−1.

Finally, we state the version of Laplace’s method for integral approximation
that we use in this paper.



Metastability Results for a Class

Proposition C.7. Let x0 ∈ R
d′

, K be a compact neighborhood of x0 and ϕ ∈
C∞(K) such that x0 is a non-degenerate minimum of ϕ and its only global
minimum on K. Let also ah ∼∑j≥0 hjaj in C∞(K) and denote H ∈ Md′(R)
the Hessian of ϕ at x0. The integral

det(H)1/2

(2πh)d′/2

∫

K

ah(x)e− ϕ(x)−ϕ(x0)
h dx

admits a classical expansion whose first term is given by a0(x0).

Appendix D: Proof of Lemma 4.3

According to the proof of Corollary C.6 and the end of the proof of Lemma
4.1 from which we keep the notations, we have the following expression for Rj :

Rj(�0, . . . , �j−1)(x, v)

=
∑

n1+n2+n3+n4=j

n3,n4 �=j

1
in1n1!

(
∂v′ · ∂η

)n1
(
gn2,n3(x, v, v′, η)∂v�n4(x, v′)

)
∣
∣
∣
∣
∣ v′=v

η=0

(D.1)

+
j∑

|β|=2

i|β|

β!
∂β

η g0

(
x,

v + v′

2
, i
(v
2

+ �0(x, v) ∂v�0(x, v)
))

×
∑

s∈Sβ,j

∏

k∈Kβ

( ∑

a∈Aβ,s,k

βk∏

l=1

(
ψal

(x, v, v)
)
k

)
∂v�0(x, v)

+ iDηg0

(
x, v, i(v/2 + �0(x, v) ∂v�0(x, v))

) j−1∑

k=1

(
�k∂v�j−k

)
(x, v) ∂v�0(x, v).

Using Lemma 4.2 and (C.3), it is clear that the last two terms of Rj(�0, · · · , �j−1)
given by (D.1) and the terms of the first sum for which n1 = 0 are real valued.
For the rest of the first term, we start by noticing that one can establish by
induction that for n1 ≥ 1,

(
∂v′ · ∂η

)n1 =
∑

p∈�1,d�n1

∂
γ(p)
v′ ∂γ(p)

η (D.2)

where using the notation (3.22), we define γ(p) =
∑n1

k=1 epk
(note that |γ(p)| =

n1). Besides, we have for 0 ≤ n2 ≤ j and p ∈ �1, d�n1

∂γ(p)
η gn2,0(x, v, v′, 0) = ∂γ(p)

η gn2

(
x,

v + v′

2
, iψ0(x, v, v′)

)
∈ in1R

d (D.3)
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according to Lemma 4.2 and in the case j ≥ 2, for 1 ≤ n3 ≤ j − 1

∂γ(p)
η gn2,n3(x, v, v′, 0) (D.4)

=
n3∑

|β|=1

i|β|

β!
∂β+γ(p)

η gn2

(
x,

v + v′

2
, iψ0(x, v, v′)

) ∑

s∈Sβ,n3

∏

k∈Kβ

( ∑

a∈Aβ,s,k

βk∏

l=1

(
ψal

)
k

)
∈ in1R

d

where we used (C.3) and Lemma 4.2 once again. The combination of (D.2),
(D.3) and (D.4) enables us to conclude that the term

∑

n1+n2+n3+n4=j

n1 �=0; n3,n4 �=j

1
in1n1!

(
∂v′ · ∂η

)n1
(
gn2,n3(x, v, v′, η)∂v�n4(x, v′)

)
∣
∣
∣
∣
∣ v′=v

η=0

from (D.1) is also real so Rj(�s0, . . . , �
s
j−1) is real valued. For the last statement,

it suffices to use the formula (D.1) after noticing that ψ (and hence the (gn2,n3))
remain unchanged when � is replaced by −�.
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